Blood vessels and blood pressure

I. Introduction

- distribution of CO at rest

II. General structure of blood vessel walls

- walls are composed of three distinct layers:

1. Tunica intima is the innermost layer; it is composed of single layer of endothelial cells and a thin layer of loose connective tissue (basement membrane, BM)

2. Tunica media is the middle layer; it is composed of a mixture of circularly arranged smooth muscle cells and sheets of elastin, the proportion of each depending on artery type; the smooth muscle cell layer is innervated by vasomotor fibers (ANS), innervation can produce vasoconstriction

3. Tunica adventitia is the outermost layer; it is composed of loosely woven connective tissue infiltrated by nerves, blood vessels and lymphatics

III. Basic organization of the CV system

- elastic arteries -- conducting vessels
- muscular arteries -- distributing vessels
- arterioles -- resistance vessels
- capillaries -- sites of nutrient, fluid, and gas exchange with tissues
- venules
 - small veins --> large veins -- capacitance vessels

IV. Hemodynamics overview

A. Blood flow, blood pressure, resistance

- blood flow: volume of blood flowing through vessel/organ/ circulation per minute; as far as systemic circulation, blood flow = CO

- blood pressure: pressure gradient between 2 points in vasculature

- resistance: opposition to flow due to friction
 - \(\text{Flow (F)} = \frac{\text{Pressure (P)}}{\text{Resistance (R)}} \)
B. Factors influencing resistance

- \(R = 8\eta L/\pi r^4 \)
 - viscosity (\(\eta \)) -- friction of fluid molecules as they slide over one another
 - hematocrit
 - plasma protein concentration
 - constant for CV system
 - length -- longer the vessel, greater surface area, greater resistance to flow
 - constant for CV system
 - radius -- changing radius greatly alters surface area of vessel exposed to a given volume of blood
 - decreasing radius -- tremendously increases resistance
 - increasing radius -- tremendously decreases resistance
- by simplification: \(R = 1/r^4 \)

V. Arteries -- functional characteristics

A. Low-resistance vessels -- blood rapidly moves from heart to tissues

B. Pressure reservoirs -- provide driving force for blood during diastole, secondary pumps

- note that despite contraction-relaxation cycles, blood pressure and blood flow through capillaries does not fluctuate -- not pulsatile
 - during systole more blood enters arteries from heart than leaves them due to resistance of smaller vessels downstream
 - arteries expand temporarily, hold "excess" ejected blood
 - during diastole heart does not pump blood into arteries, stretched arterial walls recoil, "excess" blood pushed to vessels downstream
 - thus arteries play role in dampening pressure fluctuations occurring during cardiac cycle in ventricles
C. Arterial pressure

- arterial pressure not constant as volume of blood entering arteries during systole is 1/3 greater to volume of blood leaving arteries during diastole
 - systolic pressure: highest pressure in arteries at peak of ejection (120 mm Hg)
 - only 1/3 of blood that enters arteries during this period leaves these vessels
 - diastolic pressure: lowest pressure in arteries during cardiac cycle (70 mm Hg)
 - lowest pressure achieved in arteries as blood is draining into remainder of vessels during diastole
 - pulse pressure: systolic pressure - diastolic pressure
 - mean arterial pressure: (map) average pressure in artery throughout 1 turn of the cardiac cycle
 - (diastolic + 1/3PP)

VI. Arterioles

A. Functional characteristics

- media proportionately the predominant layers, composed primarily of smooth muscle
- are the major resistance vessels of the vascular tree
 - mean arterial pressure before arterioles is 93 mm Hg; pressure of blood leaving arterioles is 37 mm Hg
 - arteriolar resistance also converts pulsatile systolic-diastolic pressure swings in arteries to non-pulsatile pressure seen in capillaries
 - resistance changes achieved by varying radius of vessels
 - small change in radius, large change in resistance to blood flow and thus blood pressure
 - vasodilation
 - vasoconstriction
 - thus arterioles are prime controllers and regulators of blood pressure
- arterioles display a state of partial constriction, vascular tone -- establishes a baseline resistance to blood flow
- state of partial constriction largely due to:
 - sympathetic fibers innervate media -- vasomotor fibers
 - tonically discharge
 - release norepinephrine -- in most beds maintains basal vascular tone
 - no parasympathetic innervation to arterioles
 - vasoconstriction -- increase sympathetic discharge
 - vasodilation -- decrease sympathetic discharge

B. Local control of arteriolar radius -- **autoregulation: capacity of tissues to regulate own blood flow**

- variably distributes cardiac output among various systemic beds so that blood flow matches tissues' metabolic needs
 - metabolic hypothesis
 - accumulation/absence of metabolites produces vasodilation/vasoconstriction of arterioles
 - the following produce relaxation of arteriolar smooth muscle (arteriolar dilation):
 - increased pCO₂
 - decreased pO₂
 - increased lactic acid
 - adenosine release
 - increased K⁺
 - increased temperature
 - myogenic hypothesis
 - vessel responds to increased stretch by reflex contraction
 - vessel responds to decreased blood flow by myogenic relaxation -- increases blood flow through area
 - example of reactive hyperemia -- response of blood vessel to occlusion
 - what happens when occlusion removed
 - what is role of myogenic and metabolic autoregulation processes in response?
C. Systemic control of arteriolar radius

1. control by hormones- systemic regulation of arteriolar diameter
 - norepinephrine/epinephrine
 - norepinephrine
 - released by vasomotor fibers in arteriole media
 - high affinity for α receptors -- generalized vasoconstrictor effect
 - can bind β receptors -- vasodilatory effect
 - epinephrine
 - most abundant of medullary hormones
 - high affinity for β receptors -- vasodilatory effect
 - dilates vessels in skeletal muscle
 - atrial natriuretic factor (ANF)
 - decreases blood pressure by promoting fluid loss from plasma
 - vasopressin (ADH) -- elevates blood pressure
 - promotes water reabsorption in kidneys
 - vasoconstrictor
 - angiotensin II
 - part of renin-angiotensin-aldosterone cascade
 - important in maintenance of blood pressure during hemorrhage and shock
 - histamine
 - inflammatory response

2. Neural regulation - systemic regulation of cardiovascular function
 - Flow (F) = Pressure (P)/ Resistance (R)
 - \(CO = \frac{BP}{R} \rightarrow CO = BP \times r^4 \)
 - since resistance is varied by altering arteriolar diameter, resistance is peripheral in circulation -- total peripheral resistance (TPR)
 - \(CO = \frac{BP}{TPR} \rightarrow BP = CO \times TPR \)
- thus can vary blood pressure by changing cardiac output and varying resistance of arterioles

- vasomotor tone maintains vascular tone of arterioles
 - maintains adequate driving pressure of blood to all systemic beds
 - if all arterioles dilate, blood pressure falls substantially, lose adequate driving force for blood flow
 - individual beds can use autoregulatory and local mechanisms to fine adjust amount of blood flow -- however need pressure head to drive flow

IV. Capillaries

- sites of exchanges (solutes and fluids) between blood and the tissues

- exchanges between blood and the tissues are passive
 - diffusion -- solutes
 - bulk flow -- fluid

- capillary structure permits such functions:
 - diffusing molecules travel very short distances between blood and ISF and cells
 - capillaries very narrow
 - capillaries are very thin -- 1 mm diameter
 - single layer of flattened endothelial cells
 - total surface area of capillaries is tremendous
 - influence on velocity of blood flow: recall that velocity is displacement per unit time (cm/s) while flow is volume per unit time (cm3/s)
 - velocity (V) is proportional to flow (F) divided by area
 - $V = \frac{F}{A}$ (cm/s = cm3/s/cm2)
 - structure of capillary wall
 - exchanges possible across cell
 - diffusion
 - vesicular transport
 - exchanges possible between cell junctions
 - exact amount regulated by state of junction -- tight junction integrity and dynamics
- Exchanges possible via "pores" in cells, fenestrations

- A capillary bed and regulation of capillary perfusion:
 - Arteriole
 - Metarteriole -- thoroughfare channel
 - True capillaries
 - Precapillary sphincters -- open or close in response to metabolic status of tissue; work with arteriole autoregulation in control of perfusion through vascular bed
 - Post-capillary venule

- Capillary exchanges -- diffusion of solutes across capillary wall
 - Exchanges occur between plasma and ISF (80% ECF)
 - Composition of ISF reflects composition of plasma (20% ECF)
 - Thus regulate composition of plasma to regulate composition of ISF (most ECF)
 - Exchanges of solutes by simple or facilitated diffusion

- Capillary exchanges -- bulk flow
 - Movement of protein-free plasma out of capillary into ISF (filtration) at arterial end of capillary; movement of protein-free fluid from ISF into capillary (reabsorption) at venule end of capillary
 - Occurs because of differences between hydrostatic and osmotic pressures of plasma and ISF
 - Outward pressures
 - Capillary hydrostatic pressure
 - ISF osmotic pressure
 - Inward pressures
 - Plasma osmotic pressure
 - ISF hydrostatic pressure
 - In most capillaries outward pressures prevail and arteriolar end and inward pressure greater at venule end
 - Some capillaries reabsorption along full length
 - Some capillaries filtration along full length
• note that on average more fluid filters out at arteriole end than at venule end
 o this fluid returned to circulation by lymphatics
 o other roles of lymphatics -- immune, GI absorption of fat
- clinical example of capillary dynamics -- edema
 • reduced concentration of plasma proteins
 o renal failure
 o liver failure
 o protein deficient-diet
 • increased permeability of capillary walls
 • increased venous pressure
 o pregnancy -- edema in legs
 • blockage of lymph vessels -- elephantiasis

V. Veins

- veins are capacitance vessel -- on average 64% of blood in circulatory system at one time found in veins

- pressure gradient that drives flow through veins very small; veins have structural adaptation that allow them to perform their function -- return blood to heart -- despite this low gradient:
 • very thin walls, little elastin
 • little myogenic tone
 • large radii -- offer very little resistance to flow
 • have valves -- unidirectional flow of blood through veins
 o valve dysfunction
 ▪ varicose veins
 ▪ hemorrhoids
- factors that affect venous capacity will influence venous return and thus cardiac output (Starling's law):
 • effect of vasomotor sympathetic tone on venous return
 o vasoconstriction decreases venous capacity and increases venous return
 o vasodilation increases venous capacity and decreases venous return
• effect of skeletal muscle activity on venous return
 o increased skeletal muscle activity milks veins -- increases venous return
• effect of respiratory pump
 o inspiration -- intra-thoracic pressure less than intra-abdominal -- suction of
 blood to heart
• cardiac suction

VI. Regulation of blood pressure

1. Short term regulatory mechanisms: neural regulation of BP

- cardiovascular center (CV) in the medulla:
 • Vasomotor center (VM): gives rise to sympathetic fibers that innervate smooth
 muscles of arterioles and veins; tonically discharges, arterioles always partially
 constricted, vasomotor tone; increased sympathetic activity will increase
 vasomotor tone (vasoconstriction); decreased sympathetic activity will decrease
 vasomotor tone (vasodilation)
 • Cardioaccelerator center (CA): gives rise to sympathetic fibers that when
 activated increase HR and contractility of cardiac muscle
 • Cardioinhibitory center (CI): gives rise to parasympathetic fibers that cause a
 decrease in HR.
 1. innervation of blood vessels (sympathetic)
 - adrenergic fibers
 - originate in VM center (VC)
 2. innervation of heart (sympathetic)
 - originate in VM center (CA)
 3. innervation of heart (PS)
 - originate in CI center
 - examine tonic discharge of each
 • tonic discharge of VC- affects to veins and arterioles
 • tonic discharge of CA vs CI- which one predominates
 4. Afferents to cardioregulatory center
 a. baroreceptors
 b. chemoreceptors -- role in blood pressure regulation