Plant Physiology (Biology 327) - Dr. Stephen G. Saupe; College of St. Benedict/ St. John's University; Biology Department; Collegeville, MN 56321; (320) 363 - 2782; (320) 363 - 3202, fax; ssaupe@csbsju.edu |
Phytochrome and Photomorphogenesis
I. Plant way of life revisited
Plants, like all organisms, must be able to monitor and
respond to environmental conditions. For example, a dark-grown seedling
"knows" that it has a limited time to get to light until it runs out
of energy. In response, an "etiolated" plant exhibits a variety of
features in response to darkness including expanded internodes for rapid growth,
an apical hook (in eudicots), unexpanded leaves, no chlorophyll. A brief exposure
to light causes internode elongation to slow, the hook to uncurl, leaves to
expand and chlorophyll synthesis to begin. Thus, light has an obvious impact on
the form of the plant (photomorphogenesis).
II. The signal: red & far-red light
In many photomorphogenetic responses, red and far-red light
are important environmental signals. For example, from studies of light
sensitive lettuce seed germination (see Table 1), Borthwick and Hendricks
concluded that: (1) germination is dependent upon which wavelength of light is
received last; and that (2) this response is the product of a photo-reversible
pigment.
Table 1: Germination of Grand Rapids Lettuce Seeds after brief exposures to red or far-red light | |
Treatment |
Percent Germination |
none |
8.5 |
red |
98 |
red, far red |
54 |
r, fr, r |
100 |
r, fr, r, fr |
43 |
r, fr, r, fr, r |
99 |
r, fr, r, fr, r, fr |
54 |
r, fr, r, fr, r, fr, r |
98 |
III. The receptor: Phytochrome
The best characterized, and most important receptor for
light-induced growth responses is phytochrome. The absorption spectrum of
phytochrome closely matches the action spectrum implicating it in these
processes.
see action/absorption spectra
IV. Nature of phytochrome
A. Chemistry
Phytochrome is a pigment-protein complex (called a
holoprotein = chromophore + apoprotein)
- blue-green
- open chain tetrapyrolle; called phytochromobilin (overhead)
- made in the plastids
- glycoprotein
- soluble
- dimer (MW 240,000 D = 240 kD); each of the two peptides are identical with a MW ca. 124,000 D and comprised of ca. 1128 amino acids
- gene(s) have been cloned and the amino acid sequence is known; large proportion of hydrophobic amino acids; suggests phytochrome is associated with membranes
- tetrapyrolle is covalently-bonded to the protein via a thioether linkage involving a cysteine
- one chromophore per dimer
- holochrome apparently "self assembles" (autocatalytic) after the individual components are synthesized. For example, the protein is made by ribosomes associated with the ER and the tetrapyrolle is synthesized in the plastids, which is not too surprising considering the similarity it has to the structure of chlorophyll.
- coded by phy genes
Type I - found in dark grown, etiolated seedlings; most studied (MW 124 kD; maximum absorption - Pr 666 nm, Pfr 730 nm)
Type II - found in light grown plants; (118 kD, Pr 654; Pfr 724)
- phytochrome in etiolated plants (type I) is slightly larger and absorbs light maximally at a longer wavelength than phytochrome from light-grown plants (type II).
- differ mainly in apoprotein
- at least five different proteins that can be identified immunologically; proteins are about 50% similar to one another.
- proteins are coded by 5 different genes called phy A - phy E. The phytochrome they make is called PHY A etc
- PHY A is found only in dark-grown seedlings (Type 1); the other four types occur in both etiolated and green (light-grown) plants. Interestingly, PHY A is unstable. The PHY A is probably important for detecting the presence of light while the others monitor its quality.
B. Photoreversibility
The unique feature of phytochrome is that it exhibits
photoreversibility; it exists in two forms that are interchangeable. Pr - red
light absorbing form and Pfr - far red light absorbing form. When Pr absorbs red
light (ca. 660 nm) it is converted into Pfr. When Pfr absorbs far red
light (ca. 730 nm) it is converted into Pr. In short,
phytochrome acts like a light switch. This can be depicted:
Pr
↔ Pfr
The absorption spectrum for phytochrome will be provided. Note that there is some overlap in the spectra and also note that there is some absorption of blue light.
C. Chemical Changes during photoreversibility
The main difference between the two forms is a cis-trans
isomerization that occurs between one pair of tetrapyrolles. This change has
the effect of extending or opening up the chromophore. The protein also
undergoes a conformation change. One piece of evidence that supports this
is that the protein is more readily digested in the Pfr form.
D. Efficiency of photoconversion
Phytochrome acts like a weird light switch that only turns
off/on a portion of the lights. In other words, red light treatment of Pr
results in about 85% Pfr + 15% Pr; far red light treatment of Pfr results in 97%
Pr + 3% Pfr. Thus, at photo-equilibrium not all the phytochrome is
interconverted. The reason for this is because the absorption spectra for the
two pigments overlap and they are essentially competing reactions.
A measure of the efficiency conversion is the ratio of the Pfr to the total which is expressed as follows:
efficiency = Pfr/(Pr+Pfr = phytochrome total)
In red light = 0.85; far red 720 nm = 0.03; this varies with the environment (see text and overhead)
E. Intermediates
There are a series of intermediates in the conversion from Pr
to Pfr. The intermediates are unstable but there is probably always a small pool
of them available. There are apparently three intermediate stages in conversion
of Pr to Pfr; and 2 stages in conversion of Pfr to Pr. Thus we can modify the
original equation:
Pr → red light → Pr* →
[1] → [2] → [3] → Pfr → far red → Pfr* [1] →
[2] → Pr
(The "*" refers to initial excited stage of phytochrome when it absorbs a photon.)
V. Regulation of Phytochrome levels
A. Synthesis
Phytochrome makes up about 0.2% of the total protein in a dark
grown plant. And, there is about 50x more phytochrome in an etiolated
plant than a green one. Pr is the form synthesized by the plant; only form
in the dark; light inhibits synthesis of Pr. Thus:
phy gene → mRNA → Pr ↔ Pfr
B. Destruction
Both are degraded in vivo. Pfr is more labile (unstable).
Protease digestion is an important route of hydrolysis; Pfr is more accessible
to hydrolysis, perhaps because it gets tagged by proteins like ubiquitin for
disposal. Thus:
phy gene → mRNA → Pr ↔ Pfr → destruction
VI. Pfr is the active form
The first hint of this came from lettuce seed germination
experiments. Since the seeds only germinated in the light and since Pr is only
found in dark grown plants, Pfr must be the active form. Thus:
phy gene → mRNA → Pr ↔ Pfr → destruction or physiological action
VII. Localization
VIII. Actions - there are many phytochrome-mediated responses (see
listing). These can be roughly grouped into three major categories:
A. Induction-Reversion Responses or, Low Fluence (LF) Responses
These are the "classic" responses that are induced by red
light and reversed by far red. These responses are sensitive to 1
μmol
m-2 , are photoreversible, and saturate at 1000
μmol
m-2. Examples include:
B. Very Low Fluence (VLF) Responses
These are extremely sensitive to low levels of light (0.1
nmol m-2. Less than 0.02% is Pfr). These are not photo-reversible and
saturate at 50 nmol m-2. Some examples include
C. High fluence (HF) or High Irradiance Response (HIR)
Prolonged or continuous light (10 mmol m-2); fluence
rate is important; and not fully photoreversible. Apparently what is important
is maintaining a low level of Pfr over time. Another pigment is likely involved
- a blue-UVA receptor (cryptochrome?). Examples of phenomena involved in this
reaction include:
VI. Mechanism of Action
A. Stimulates transcription
Jaffee (1969) found RNA levels in pea increased after red
light treatment. Rubisco is light-stimulated, other genes inhibited. Phytochrome
involved at the transcriptional level.
The mechanism of action is not clear, but the Pfr may activate an inactive regulatory protein that moves into the nucleus to bind to a site on the DNA near the genes of interest to promote their transcription.
B. Calmodulin
This calcium binding protein may be involved in phytochrome action. Pfr has been shown to stimulate calcium uptake in Mougeotia. Calcium
complexes with calmodulin and can stimulate enzymes.
Predictions:
| Top | SGS Home | CSB/SJU Home | Biology Dept | Biol 327 Home | Disclaimer | |
Last updated:
04/30/2009 � Copyright by SG
Saupe