
Calculation of Entropy from the Partition Function 
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Using our earlier results, 
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2

1E E
d dE dT
kT kT kT

  = −  
. 

Next, add the last two equations: 
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But from the fundamental equation of thermodynamics, we have 
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And finally 
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where 0S  is a constant of integration.  Compare with Baierlein Eq. 5.25. 

Exercise:  Recall the third law of thermodynamics:  0  as  0S T→ → .  Show that the third 
law suggests that 0 0S = .  Hint:  Suppose the ground state of our system has energy 0ε .  All 
other energy levels are higher, so that at low temperatures, the system should be found in this 
state.  Use this assumption to show 0   as  0S S T→ → . 

Moreover, apart from the third law, we measure only entropy differences.  Hence we can always 
choose 0 0S = , just as we can always choose an arbitrary zero for an energy scale. 


