Calculation of Entropy from the Partition Function

We suppose the partition function Z = Z(E,V,N) = Z(T,V,N); then
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Using our earlier results,
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Now, consider the identity
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Next, add the last two equations:
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But from the fundamental equation of thermodynamics, we have
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Whence
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And finally
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where S, is a constant of integration. Compare with Baierlein Eq. 5.25.

Exercise: Recall the third law of thermodynamics: S — 0 as T — 0. Show that the third
law suggests that S, = 0. Hint: Suppose the ground state of our system has energy ¢,. All

other energy levels are higher, so that at low temperatures, the system should be found in this
state. Use this assumption to show S — 5, as T — 0.

Moreover, apart from the third law, we measure only entropy differences. Hence we can always
choose S, = 0, just as we can always choose an arbitrary zero for an energy scale.



