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Fourth Section.

Entropy and Probability.

First chapter.  Introduction.  Fundamental theorems and Definitions.
§128.  Since with the introduction of probability considerations into electromagnetic

radiation theory an entirely new, for the basis of electrodynamics entirely strange element
in the purview of the investigation enters in, then raises itself equally at the beginning of
this chapter the principle preliminary questions about the justification and about the
necessity of such considerations.  One could, that is to say, by superficial considerations
easily to the conclusion incline ?[neigen], that for probability calculations in a pure
electrodynamic theory in general no place would exist.  For since the electromagnetic
field equations together with the initial and boundary conditions the temporal
development of an electrodynamic process unambiguously determines, as is generally
known, then would considerations, which stand external to the field equations, in
principle unwarranted, but in any case superfluous.  Either they lead, that is to say, to the
same results as the electrodynamic field equations—then they would be superfluous; or
they lead to other results—then they would be incorrect.

In spite of this apparently unavoidable dilemma, there remains ?[stecken] in these
considerations a gap.  For the results, to which in the electromagnetic theory of heat the
electrodynamic field equations alone lead ??[genommen fuhren], are by no means
unambiguous, but on the contrary they are ambiguous, and even ambiguous to infinitely



higher order.  If we begin ?[anknu”pfen], in order this to examine/discover [einsehen], to
the special in the last chapter considered example, that a resonator of the there considered
elementary sort itself in a in after all directions equally radiated vacuum exists.  There we
drew the conclusion, that in the run of time itself a stationary oscillation state
[Schwingungszustand] produces, in which the from a resonator in unit time ?[Zeiteinheit]
absorbed and emitted energy a constant, the intensity K0 of the it activated
monochromatic ray proportional value possessed.[?]  But this conclusion we could, as at
the beginning of § 122 was explicitly emphasized, only thermodynamically, by no means
elecrodynamically established, whereas one from the standpoint of electrodynamic
radiation theory must require, that, as all concepts, so also all theorems of heat radiation
from purely elecrodynamic considerations must be developed.  If one only wished to
seek, the general connection between the from the resonator absorbed energy and the
intensity of the by it ?? [ihn] activated/stimulated ray [Strahlung] entirely without the
mixing in ?[Einmischung] of thermodynamic knowledge from a purely electrodyamic
route to derive, then would one soon find, that it does not give such a general connection
at all, or in other words, that one over the from a resonator absorbed energy, at given
intensity of the [by] it stimulated ray, from the standpoint of pure electrodynamics in
general nothing at all assert, as long as from the values of the amplitudes Cn and the
phase constants θn of the individual in the stimulated ray containing partial waves nothing
further is known.  For as well the absorbed energy as also the intensity of the stimulated
ray will through certain average values be represented, which from the quantities Cn and
θn every time in different ways are to be composed, and which therefore not in general
from one another can be calculated, no more than, as one could calculate the average
value of Cn from the average value of Cn

2.  Thus if also the intensity of the radiation,
which from all sides falls on the resonator, for all spectral regions ?[Spectralbezirke] as a
function of orientation and eventually of time is entirely given, and also the initial state of
the resonator is known, so allows itself the oscillations of the resonator from that [daraus]
still not unambiguously be calculated, also not approximately, also not for sufficiently
long times [Zeitepochen].  On the contrary can the resonator, in the case over the
individual values Cn and θn are suitably arranged, by the same striking radiation intensity
to entirely different kinds of oscillations be caused.  [??] Indeed, we will later, in the first
chapter of the next section, a special, with all electrodynamic laws entirely compatible
process closely discuss, where the resonator, as strange as it sounds, the from all sides on
it falling radiation entirely and continually absorbed, without in general ever the smallest
amount of energy emitting (§ 172); further thus an other process, where the from a
resonator absorbed energy even is negative,1 where thus the [auffallende] radiation
withdraws energy from the resonator, until its energy equals zero! (§ 173).

From a single such example we see, that by the intensity of the stimulated ray the
oscillations of a resonator still by no means are determined, and that therefire in a case,
where after the laws of thermodynamics and after all experience an unambiguous result is
to be expected, the pure electrodynamics entirely deserted, since for it the presented data
not half /not nearly suffices, in order the in the electrodynamic differential equations
appearing constants unambiguously to determine.

                                                
1   See the note to § 111.



§129.  Before we this circumstance and the with it for the electrodynamic theory of
heat radiation bound difficulty further pursue,  we may draw attention to, that by the
mechanical theory of heat, especially the kinetic gas theory, just the same circumstance
and the same difficulty exists.  For if approximately in a streaming/flowing gas at time
t = 0 at each place the velocity, the density, and the temperature is given and in addition
the boundary conditions are completely known, then will one after all experience expect,
that through it the temporal run of the process is unambiguously determined.  But from a
purely mechanical standpoint such is by no means the case; for through the visible
velocity, the density and the temperature of the gas are still not entirely given the
positions and the velocities of all individual molecules, and these one must accurately
know, if one from the equations of motion the temporal runoff the process would
completely calculate.  Thus lets itself here easily be shown, that from the same values of
the visible velocity, the density, and the temperature infinitely many well varied
[verschiedenartig] processes are mechanically possible, of which a few directly contradict
the fundamental laws of thermodynamics, namely the second law.

§130.  From these considerations we see, that, if it concerns the calculation of the
temporal run of a thermodynamic process, as well the mechanical theory of heat as also
the electrodynamic theory of heat radiation with that formulation of the initial- and
boundary conditions, which in thermodynamics to an unambiguous determination of the
process entirely suffices, by no means comes out ?[auskommt], but on the contrary that
from the standpoint of pure mechanics [bez.] electrodynamics considered still infinitely
many solutions of the problem exists.

§131.  Now it is very worthy of note that, even if hereafter the definitive proof of
different permissible hypotheses first can follow a postiori, one can already through an a
priori consideration, without supporting itself in any way on thermodynamics, can
acquire [gewinnen] a firm basis for the substance [Inhalt] of the asserted [?
aufzustellenden] hypothesis.  Let us again consider namely the above example (§ 128)
that a resonator in a given initial state to a ray of given intensity is exposed [aussetzen].
Then is, as at that time was discussed, the oscillation process in a resonator, so long as
one the uncontrollable solitary values [? Einzelwerte] of the Cn and θn in the stimulated
radiation quite often allows, infinitely many times.  But now if one all the infinitely many
cases, as they the different by the given radiation intensity possible values of the Cn and
θn correspond, more closely examined, and the results, to which they individually lead,
with one another compared, then one finds, that the enormous majority of these cases in
the average values to entirely corresponding results lead, while those cases, in which
itself noticeable departures show, only in proportionally vanishing small number
occurring, namely then, if certain entirely special exceptional conditions between the
individual [einzelnen] quantities Cn and θn are satisfied.  If one also assumes that such
special conditions are not valid [nicht gelten], hence it follows, as different also the
constants Cn and θn in general may be chosen, for the resonator an oscillation that, if also
naturally not in all particulars [Einzelheiten], so still in consideration of all measurable
average values—and these are the only ones [einzigen] that can be controlled—a entirely
definite can be referred to. [?]  And, what now is remarkable is: corresponds in just this
way the supported [erhaltene] oscillations to the demands of the second law of



thermodynamics, as in the next chapter [Abschnitt] will be more closely worked out (see
§ 182).

In mechanics it stands precisely the same.  If one, in order to the previous example (§
129) to return to, all only conceivable positions and velocities of individual gas molecules
considers, that with the given values of visible [sichtbaren] velocity [??], the density and
the temperature of a gas are compatible, and for each combination of the same the
mechanical process exactly after the equations of mothion calculated, then one finds
likewise, that in the enormous majority of cases processes result, wich, if also not in the
particulars [Einzelheiten], still in all measurable average values with one another in
agreement, and in addition the second law of thermodynamics satisfies.

§132.  After these considerations it is clear, that the hypotheses, whose introduction
above as necessary was demonstrated, their object entirely satisfied, if their contents
nothing further signified [besagen], than that such special cases, which special conditions
between the individual direct not controllable constants correspond, do not occur in
nature.  In mechanics this affords [leistet] the hypothesis,1 that the thermal motions are
“molecularly disordered” [“molekular-ungeordnet], in electrodynamics affords the
corresponding hypothesis that of “natural radiation,” which means, between the
numerous different partial oscillations (179) of a ray no other conditions exist, than those,
which through the measurable average values are required (§ 181).  If we to the
abridgment [? zur Abkürzung] of all states and all processes, for which such an
hypothesis is valid, as “elementary disordered” [elementar ungeordnet”] designate, then
yields the theorem, that in nature all states and all processes, which contain numerous
uncontrollable components, are elementary disordered, the prerequisite, but also the
certain guarantee for the unique/unambiguous determinability [Bestimmbarkeit] of
measurable processes, as well in mechanics as in electrodynamics, and at the same time
for the validity of the second law of thermodynamics, whereby then self-evidendtly also
for the second law characteristic concept of entropy and the with it immediately
connected temperature, its mechanical [or?] respectively [bez.] eletrodynamic
explanation must find.  At the same time it follows, that the concepts of entropy and
temperature their essence from  the condition of elementary disorder are connected.  A
purely periodic absolutely plane wave possesses neither entropy nor temperature, because
it contains no uncontrollable quantities at all, and thus cannot be elementary disordered,
just as the by the motion of an individual motionless [starren] atom is the case.  First the
irregular interaction of very many partial oscillations of different periods, which
themselves independent of one another after the different directions in space propagate,
or the unregulated through one another flying about [Durcheinanderschwirren] very many
atoms create the preconditions for the applicability of the hypothesis of elementary
disorder, and with it for the existence of an entropy and a temperature.

§133.  But which mechanical or [bez.] electrodynamic quantites describe the entropy
of a state?  Often these quantities are in some way connected with the “probability” of a
state.  For since the elementary disorder and the lack of every
individual/selective/separate control [Einzelkontrolle] to the essence of entropy belongs,

                                                
1   L. Boltmann, Lectures on Gas Theory, 1, p. 21, 1896.  Vienna Sitzungsber., 78, June 1878, at the end.
See also S. H. Burbury, Nature, 51, p. 78, 1894.



then can only combinatoric or probabilistic considerations the necessary starting point for
the calculation of these quantities allow.  Already the hypothesis of elementary disorder
itself is indeed the essence [Wesen] of a probability theorem, since it from an enormous
number of equally probable cases a definite number singles out and the same as in nature
declares nonexistent.

Since now the concept of entropy, just as the content of the second law of
thermodynamics, is a universal, and since on the other hand the theorems of probability
possess neither more nor less [nicht minder] universal significance, then is it to be
supposed, that the connection between entropy and probability will be very
narrow/restricted [enger].  We place therefore our more distant [?? ferneren] remarks to
the following theorem to the cusp [?] :  The entropy of a physical system in a definite
state depends solely on the probability of this state.  The permissibility and fruitfulness of
this theorem will later be shown in different cases.  A rigorous general proof of the same
will be given but we do not attempt it here.  Indeed, such an attempt would obviously in
this place not even have a meaning.  For as long as the “probability” of a state is not
defined numerically, one cannot give a numerical proof of above theorem.  One could
even perhaps at first glance conjecture, that it on this ground in general has no definite
physical content.  Nevertheless lets itself be shown through a simple deduction, that one,
without on the concept of the probability of a state more closely going into, on the basis
of the above theorem, [one] is in the position, the kind of dependence of entropy on
probability entirely generally to establish.

§134.  If we call S the entropy, W the probability of a physical system in a definite
state, then the above theorem says, that

( ),S f W= (201)

where ( )f W  signifies a universal function of the argument W.  If one now may also
define W more closely, as far as lets itself at all events to the mathematical probability
concept as established take from [be taken from?], that the probability of a system, which
from two from one another entirely independent systems  is composed, is equal to the
product of the probabilities of both individual systems.  If we consider for example as the
first system any body on the earth, as the second system a [durchstrahlten] cavity from
Sirius, then is the probability for it, that the earthly body in a definite state 1, and at the
same time the cavity radiation ?[Hohlramstrahlung] in a definite state 2 finds itself:

1 2W W W= ⋅ (202)

if W1 and W2 are the probabilities for it, that the respective/concerned ?[betrefende]
system in the respective state finds itself.  If now S1 and S2 are the entropies of the
individual systems in both states

1 1 2 2( ), ( ).S f W S f W= =

But from the second law of thermodynamics is the total entropy of the two from one
another independent systems: 1 2S S S= + , consequently from (201) and (202):

( )1 2 1 2( ) ( ).f W W f W f W= +



From this functional equation lets itself f be calculated.  If one differentiates namely on
both sides with respect to W1, at constant W2, then comes:

2 1 2 1( ) ( ).W f W W f W=� �

If one next differentiates with respect to W2 at constant W1, then comes:

1 2 1 2 1( ) ( ) 0f W W W W f W W+ =��

or

( ) ( ) 0.f W W f W+ =� ��

The most general integral of this differential equation of second order is:

( ) log  const.f W k W= +   Thus from (201):

log  const,S k W= + (203)

by which the dependence of the entropy of the probability is in general determined.  The
universal constant of integration k is for an earthly system the same as for a cosmic [one],
and if its numerical value is determined, it is valid for both.  The second, additive
constant of integration has, because the entropy S contains an arbitrary additive constant,
no physical significance, and can be omitted at will.

§135.  The relationship (203) contains a general method for calculating the expression
for the entropy S through probability considerations.  Still will the same naturally first
then from practical uses, if the size W of the probability of a physical system in a given
state can be specified numerically.  The search for the most general and precise definition
of this quantity belongs to the most important tasks of the mechanical or else ?[bez.]
electrodynamic theory of heat.  To start with, it requires a closer inspection of the concept
of the “state” of a physical system.

By the “state” of a physical system at a fixed time we understand the totality of all
these from one another independent quantities, through which the temporal run of the in
the system taking place processes, so far they are to measurement accessible, by given
boundary conditions are uniquely determined; the knowledge of the state is thus juset
equivalent to the knowledge of the “initial conditions.”  There for is for example for a
from unchanging molecules composed gas the state determined through the law of space-
and velocity distribution, that is through the specification of the number of molecules,
whose coordinates and velocity components always [je] within an individual small
“interval” or “domain” lie.  The to the different domains corresponding numbers of
molecules are in general entirely independent of one another, since the state does not
need to be an equilibrium or stationary state; they must thus all be individually known, if
the state of the gas can be considered as given.  On the other hand, is it for the
characterization of the state not necessary, the closer details regarding the within an
individual elementary domain contained molecule to specify; for here enters the as a
supplement the hypothesis of elementary disorder, which in spite of the mechanical
uncertainty the uniqueness of the temporal process vouches for.



For a light or heat ray is the state determined through the orientation, the spectral
energy distribution, and the polarization state (§ 17).  Details over the amplitude and
phase of an individual periodic partial wave of a ray is not necessary to now, since also
here the hypothesis of elementary disorder as a supplement intervenes.

One sees, that the so definite state concept, in a statistical sense, is well to be
distinguished from the state concept in an absolute mechanical or electrodynamic sense,
after which is a state first then may be considered as given, if the coordinates and velocity
components of each individual molecule, respectively [bez.] the amplitueds and phases of
all individual partial waves are accurately known.  In such a state would no
uncontrollable elements occur and therefore also no probability considerations at all are
in place.

§136.  If we now of the probability W of a definite elementary disordered state speak,
then is with it expressed, that such a state can be realized in different ways.  For each
state, which contains many similarly uncontrollable constituents, corresponds to a certain
“distribution” [“Verteilung”], namely in the first example the distribution of the
coordinates and the velocity components of the gas molecules, in the second example the
distribution of amplitudes and phases of the individual partial waves.  But a distribution
is always an allocation ?[Zuordnung] of a group of among themselves similar elements
(coordinates, velocity components, amplitudes, phases) to an other group of among
themselves similar elements (molecules, partial waves).  As long as one a definite state in
eye grasps [or envisions], it manifestly/obviously [offenbar] only depends on how many
elements of both groups each other mutually ordered are, but does not depend, on which
individual elements of a group are assigned to definite individual elements of the other
group.  Then can a definite state through a large number of from one another different
individual assignments come about.  If we thus name each unique distribution, by which
the elements of a group are individually associated with the elements of the other group, a
“complexion,” then contains a definite state in general a large number of different
complexions.  This number, that is the number of complexions, which a given state
encompasses, we define as the probability W of the state, and obtain by an average, in
order in a given case W and then from (203) the entropy S of the state to calculate.  Closer
explanations over the sort of calculation will in the next two chapters come up in detail.

§137.  Here is only on a point alluded to, in which itself the used definition of
probability differs from the otherwise usual definition of the mathematical probability of
an event.  The last is defined, as is generally known, as a legitimate [echter] fraction,
namely as the quotient of the number favorable to the event [divided] by the number of
all equally possible [gleichmöglich] cases.  In distinction to it [Im Unterschied davon]
will here the probability W of a physical state by a whole number, and to be sure by a
large number be expressed.  One could attempt, the distinction of the two definitions
thereby to remove, that one divides the number of complexions, which encompasses a
state, by the number of  “all possible” complexions, and this quotient as the probability of
the state denotes.  By itself it would here by the question after the number of all possible
complexions in certain cases [unter Umständen] give rise to difficulties, which we would
gladly avoid, as we those questions do not at all raise, and stop [stehen bleiben] with  the
above given definition of the probability W of a state.  For the calculation of the entropy



will the discussed difference anyway be unimportant, since it after (203) only the addition
of an additive negative constant amounts to.

Second Chapter.  Entropy of an ideal monatomic gas.

§138.  In the previous chapter was the justification and the necessity of the
introduction of probability concepts in the mechanical and in the electrodynamic theory
of heat demonstrated, and from the general connection of the entropy S with the
probability W, which is expressed in Equation (203), a method derived, the entropy of a
physical system in a given state to calculate.  Before this method to the determination of
the entropy of radiant heat is applied, will it in this chapter be used, the entropy of an
ideal monatomic gas in an arbitrary given state to calculate.  All of the essentials of this
calculation are to be sure already found in the in part still further ? ausgreifende
investigations of L. Boltzmann1 on the mechanical theory of heat; however/meanwhile
[indessen] will it still be recommended, here on that especially simple case especially to
go into, once in order the method of calculation and the physical significance of the
mechanical entropy with that of radiation entropy conveniently to be able to compare, but
then primarily thus, in order the significance of the universal constant k of Equation (203)
in the kinetic gas theory clearly to be allowed to stand out; and in addition suffices
naturally treatment of a unique special case.

§139.  We consider an ideal, consisting of N monatomic molecules of the same kind
gas in a given state and ask after the entropy of the gas in this state.  Since the state as
given is presumed, then is the law f spatial and velocity distribution as known assumed (§
135). If we thus consider the spatial domain, which through the spatial coordinates x, y, z,
and their differentials dx, dy, dz, and the velocity domain, which through the velocity
components ξ, η, ζ and their differentials dξ , d η, dζ  are characterized, then is the
numbef of molecules, whose coordinates and velocities at the same time n these two
domains lie, to be considered as given.  The extent of such an “elementary domain”:

dx dy dz d d d dξ η ς σ⋅ ⋅ ⋅ ⋅ ⋅ =

is small compared to the external limits of the entire domain, but nevertheless to be
considered large enough, that many molecules are found in it; for otherwise could the
state not be elementary disordered.  We set therefore the number of the in the elementary
domain dσ  molecules equal to:

( , , , , , )f x y z dξ η ς σ⋅ (204)

f is here as a finite known function of the coordinates and velocity components to be
considered, whose analytical expression clearly describes the total/entire [gesamt]
partition law and with it the state of the gas.  For on the special ordering of molecules
within an individual elementary domain it depends no further. [??]  We wish f as
continuous and differentiable to assume; in general must f only the one condition satisfy,

                                                
1   L. Boltmann, Sitzber. D. Akad. D. Wissensch. zu Wien (II) 76, p. 373, 1877.  See also Gas Theory 1,
p.38, 1896.



that itself by integration over all elementary domains yields the total number of gas
molecules:

.f d Nσ = (205)

§140.  It concerns now in essence in order the determination of the probability W for
the given spatial and velocity distribution, which from § 136 is equal to the number of
complexions which correspond to this distribution.  To this goal we first take, what
hitherto was not important, all elementary domains dσ  as equally large.

Now one can the given spatial and velocity distribution vividly illustrate through it,
that one numbers the different equally sized elementary domains, the numerals
[Nummern] written next to one another, and under each numeral, set the number of
molecules which lies in the concerned domain.  If we had for example only 10 molecules
and only 7 elementary domains, then would a definite distribution be represented:

1 2 3 4 5 6 7
1 2 0 0 1 4 2

which means that

1 molecule in the  1. elementary domain,
2 molecules “ 2. “
0 molecules “ 3. “
0 “ “ 4. “
0 “ “ 5. “
4 molecules “ 6. “
2   “ “ 7. “ lie.

This definite distribution can now be realized through many different individual
orderings or complexions, each according as a definite in the eye fixed molecule in this or
in that elementary domain comes to lie.  In order a single such complexion to symbolize,
one can provide the molecules with digits [Ziffern], write these next to one another, and
under each molecule set digit the numeral of that elementary domain, to which the
concerned molecule belongs for this complexion.  Fir the above introduced distribution
we obtain so as expression of a single to it belonging arbitrarily chosen complexion the
following numerical illustration:

1 2 3 4 5 6 7 8 9 10
6 1 7 5 6 2 2 6 6 7 (206)

This way is expressed, that

The 2. molecule … in the 1. elementary domain,
“ 6. & 7. molecules … “ 2. “
“ 4. molecule … “ 5. “
“ 1., 5., 8., & 9. molecules “ 6. “
“ 3. & 10. molecules … “ 7. “ lie.

As one through a comparison with the previous table immediately perceives, this
complexion in fact corresponds in all parts to the above given distribution law, and



likewise allows easily many other complexions to be given, which belong to the same
distribution law.  The sought number of all possible complexions results now from the
consideration of the under both rows of integers (206).  For since the number of
molecules is given, then contains the row of numerals a definite number of places ?
[Anzahl Stellen].  Since further the distribution law is given, then can each numeral (that
is, each elementary domain] always appears just so often in the row, as the number of
molecules amounts to, which lie in the considered elementary domain.  In general
requires each change of numeral position [Ziffernbildes] a new individual ordering of
molecules to the domain, thus a new complexion.  The number of possible complexions,
or the probability W of the given state, is thus equal to the number of under the named
conditions possible “permutations with repetition.”  In the chosen simple numerical
example yields therefore after a known form the expression:

10! 37800.
1!2!0!0!1!4!2!

=

The form of this expression is so chosen, that it easily from the here existing
[vorliegenden] case of gas molecules can be generalized.  The numerator contain the
faculty [Fakultät] or factorial of the total number N of considered molecules, the
denominator the product of the faculties [Facultäten] of molecule numbers, which lie in
each individual elementary domain, and which in our case through the expression (204)
are given.

Therefore we obtain for the sought probability of the given spatial and velocity
distribution, and with it of the given state of the gas:

!
( )!

NW
f dσ

=
Π

The symbol Π signifies the product, extended over all elementary domains dσ.

§141.  From the forgoing it follows from (203) for the entropy of the gas in the given
state:

log ! log( )! .S k N k f d constσ= − +

the summation extends over all elementary domains dσ.
Since f dσ  is a large number, then lets itself for the factorial [Facultät] of the same

the Stirling formula be used, which for a large number n runs in abbreviated form
[abgekürzt]:1

! 2
nnn n

e
π�= �

�
. (207)

Thus, with the omission of inessential terms,

log ! (log 1)n n n= − .

Therefore, using f dσ  instead of n:
                                                
1   See for example B. E. Czuber, Calculus of Probability [Wahrscheinlichkeitsrechnung] (Leipzig, B. G.
Teubner), p. 22, 1903.



[ ]log ! log 1 .S k N k f d f d constσ σ= − − +

The summation sign we replace from now on by an integral sign.  Further we
will consider all additive constant terms in the const absorbed.  To that belongs first the
term with !N , in addition the factor dσ behind the logarithm, because all elementary
domains are equally large, and because f d Nσ =  is constant, finally the term with

1− .  Then remains for the entropy of the gas the remaining expression:

logS const k f f dσ= − , (208)

valid for any arbitrarily given space and velocity distribution of the gas molecule, thus for
each state of the gas.

§142.  We will now specifically determine the entropy of the gas in an equilibrium
state, and ask therefore first after that form of the distribution law, which corresponds to
thermodynamic equilibrium.  From the second law of thermodynamics is an equilibrium
state distinguished by the condition, that for given values of the total volume V and the
total energy U, the entropy S takes on its maximum value.  If we thus set the total volume
of the gas molecule [to]:

V dx dy dz=

and the total energy of the same [to]:

( )2 2 2

2
mU f dξ η ζ σ= + + (209)

as given previously [voraus] (m the mass of a molecule), then must for the equilibrium
state the condition hold:

0Sδ =

or from (208):

( )log 1 0,f f dδ σ+ = (210)

where the variation fδ  itself to an arbitrary with the given values of N, V, and U
compatible change of the distribution law refers to.

Now is because of the constant number N of gas molecules from (205):

0f dδ σ =

and because of the constant total energy U from (209):

( )2 2 2 0.f dξ η ζ δ σ+ + =

Consequently is to the realization [Erfüllung] of the condition (210) for all permitted fδ
necessary and sufficient, that



( )2 2 2log constf β ξ η ζ+ + + =

or

( )2 2 2

f e β ξ η ζα − + += , (211)

with α and β constant.  Thus in the equilibrium state is the spatial distribution of the
molecule uniform, that is, independent of x, y, z, and the velocity distribution is the
known Maxwellian.

§143.  The values of the constants α and β follow from those of N, V, and U.  For the
substitution of the found expression for f in (205) results in:

( )2 2 2
3/ 2

N V e d d d Vβ ξ η ζ πα ξ η ζ α
β

+∞
− + +

−∞

�= = �
�

and the substitution of f in (209) results in:

( ) ( )2 2 2
2 2 2

2
mU V e d d dβ ξ η ζα ξ η ζ ξ η ζ

+∞
− + +

−∞

= + +

3/ 2
3 1 .
4

mU Vmα
β β
�= �
�

It follows that:
3/ 23 3,

4 4
N mN mN
V U U
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and finally following from (208) the expression for the entropy S of a gas in the
equilibrium state at given values of N, V, and U:

3 log log .
2

S const kN U V�= + +�
�

(212)

Here the additive constant contains terms with N and m, but not with U or V.

§144.  The here led through determination of the entropy of a monatomic gas depends
only on the general by Equation (203) expressed connection between entropy and
probability; in particular, we have by our consideration in no place made use of any
special theorem of the theory [Lehre] of gases.  Therefore it is of importance to see, how
now from the found expression for entropy the entire thermodynamic behavior of a
monatomic gas, namely the general thermodynamic definition equation for entropy:

dU p dVdS
T
+= (213)

results from the partial derivatives of S with respect to U and V:
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It follows for our gas, with the use of (212):
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and

.
U

S kN p
V V T

∂� = =� ∂�
(215)

The second of these two equations:

kNTp
V

=

embodies the laws of Boyle, Gay Lussac, and Avogrado, and the last therefore, because
the pressure depends only on the number N, not on the character of the molecule.  If one
writes it in the usual form:

,RnTp
V

=

where n the number of gram molecules or moles of the gas, based on O2 = 32 g, and R
signifies the absolute gas constant:

5 erg8.31 10 ,
degree

R = ⋅ (216)

then it follows by comparison:

.Rnk
N

= (217)

If we call ω the ratio of the number of molecules to the number of moles, or, what is the

same thing, the ratio of the molecular mass to the molar mass, n
N

ω = , then it follows:

.k Rω= (218)

From this one can, if ω is given, calculate the universal constant k, and invert.

Equation (214) becomes [lautet]:

3
2

U kNT= . (219)

Since now, on the other hand, the energy of an ideal gas:

,vU Anc T=



where cv signifies the heat capacity in calories of a mole at constant volume, and A  the
mechanical equivalent of heat:

5 erg419 10 ,
cal

A = ⋅ (220)

then it follows:
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and by consideration of (217):
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(221)

as the molar heat [Molwärme] in calories of any monatomic gas at constant volume.1

For the molar heat cp at constant pressure, it follows from the first law of
thermodynamics that:

p v
Rc c
A

− = ,

thus in consideration of (221):
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which is well known for monatomic gases.

The average energy or the average kinetic energy L of a molecule from (219) results
in:

3
2

U L kT
N

= = . (222)

One sees, that all of these relationships follow [sich ergeben] solely from the
identification of the mechanical expression (208) with the thermodynamic expression
(213) for the entropy.

Third Chapter
Calculation of the radiation energy and consequences from it.

Energy partition law.  Elementary quanta.

§145.  After we have seen, how one can calculate for an ideal gas the expression for
entropy directly from the probability of the state, and how itself from it all
thermodynamic properties of the gas through a direct application of the laws of
thermodynamics can be deduced (derived?), we will now carry through (durchfuhren) the
same train of thought for radiant heat.  From Wien’s displacement law we obtained in
                                                
1   See F. Richarz, Wied. Ann. 67, p., 705, 1899.



Equation (119) an expression for the spatial entropy density s as a function of the spatial
energy density u, further in Equation (134) an expression for the spatial entropy density s
of an individual ray as a function of its specific intensity K, finally in Equation (200) an
expression for the entropy S of a resonator exposed to thermal radiation as a function of
its energy U.  Each of these three expressions contains an up to now still unknown
remaining universal function of a single argument, and the calculation of this function is
in the following arrived at.  If this problem for one of the three named expressions is
solved, are with it also the two other expressions found, by virtue of  the known earlier
connections between the quantities s, L, and S among themselves, and the quantities u, K,
and U among themselves.  We can therefore from the outset begin with any of these three
equations.  For the most part recommends itself naturally (or, it is naturally advisable) the
simplest of them to choose, and that is, as already earlier emphasized, the resonator
equation (200):

US F
ν

�= �
�

, (223)

if we the oscillation frequency of the characteristic period of the resonator from now on
denote briefly with ν without an index.  The function F contains except for its argument
only universal constants.

§ 146.  In connection with the closer investigation of the entropy of a resonator of
given energy, the first question is after the kind of elementary disorder, on which the
entropy depends and without which it possesses no significance (§ 132).  A glance at
Equations (187) and 195 gives the answer.  According to them are the oscillations of an
to thermal radiation exposed resonator composed from a large series of partial
oscillations, and its energy is an average value from very many in particular/individually
? [im einzelnen] not controllable quantities.  These numerous from one another
independent partial waves are thus it, which play the same role by the resonator with
regard to elementary disorder, which for a gas is due to the numerous molecules moving
about pell-mell.  Thus one can say little about a gas of a finite entropy, if all molecules
have equal and equally directed velocities, or in any other way have ordered velocities,
just as little comes to a resonator a finite entropy, if its oscillations are nearly simply
periodic or if they in general follow any definite law at all, which governs everything in
particular ?? [das alles bis ins einzelne regelt.]  For then is the oscillation process no
longer elementary disordered.  Therefore possesses for example a resonator, which is not
in general agitated from outside, no finite entropy and no finite temperature, even if it can
have a finite energy.

Whether or not the resonator oscillations are elementary disordered, can one often not
at all judge, if one considers the state of a resonator only at a fixed instant.  For then
remains it still entirely undetermined, whether the state changes regularly or irregularly
with time.  Thus agrees entirely with it, that we the energy U of a resonator exposed to
stationary thermal radiation can only define as a time average, as in § 123 occurred ?
[geschehen ist].  On this basis thus the entropy of a resonator possesses significance not
for an instant but only for a time interval, which contains many resonator oscillations, and



we can only speak of a time average of the entropy.1  Briefly said:  by the thermal
oscillation of a resonator is the disorder temporal, while it for the molecular motion of a
gas is spatial.  However falls this distinction for the calculation of the entropy of a
resonator not so important, as it perhaps at first glance might appear; for it lets itself
through a simple consideration be removed, what in the interest of a uniform treatment of
advantage is.

The time average U of the energy of an individual in a stationary radiated vacuum
situated resonator is of course evidently identical with the at a fixed instant taken average
value of the energies of a very large number N of equally constituted resonators, which
find themselves in the in the same stationary radiation field, but so far removed from one
another, that their oscillations are not perceptibly affected.  Naturally must to this goal the
field of sufficiently spatial extension be taken.  With it is the question after the partition
of energy among the individual partial waves of a single resonator reduced to the spatial
partition of energy among the N resonators, as better corresponds to the treated case in
connection with gas molecules.

§ 147.  In order to calculate now the entropy of this system of N equally constituted
resonators in a given state in a stationary radiation field existing, we must to begin with,
following the argument of § 135, ask after that quantity, which determines the physical
state of the system.  That is here purely and simply [einzig und allein] the average energy
U of a single resonator, or rather the total energy UN of the entire system of resonators,
which is related to U by the equation:

NN U U= (224)

For since/if [da] the radiation field is stationary, then the physical state of the entire
system is determined by the energy.  In this point lies the most important distinction
between the case considered here, and the earlier case of a gas.  For there the state was
restricted [bedingt] by the kind of spatial and velocity distribution among the molecules,
which could be taken as entirely random.  Only if the distribution law were first given,
could the state be taken as known.  Here by contrast the specification of the total energy
UN of the N resonators suffices for the determination of the state; the special kind of
distribution of the energy UN  among the separate Resonators is no longer subject to
regulation [Kontrolle], it is left entirely to chance, to elementary disorder.  For the
condition that the radiation field is stationary does not signify here [? nicht etwa] a
special case among many others, but on the contrary, belongs with the necessary
assumptions; otherwise one could no longer identify the quotient /NU N , as we have
done, with the time average of the energy of a single resonator.

§ 148.  It is moreover ? [nun weiter] a question of  the probability W of the through
the energy UN  determined state of N resonators, that is of the number of individual
assignments or complexions, which corresponds to the distribution of the energy among
the N resonators (§ 136).  We can proceed here in full analogy with gas molecules, if only
we bear in mind that the given state of the resonator system does not, as there, admit of a

                                                
1   In connection with the application to nonstationary fields must the time interval on which the average is
based be taken so small that the field can be considered as stationary.



single distribution law, but on the contrary a large number of different ones, since the
number of resonators that possess a definite amount of energy (better: which fall in a
definite “energy domain”) is not prescribed, but on the contrary can vary.  If we consider
all possible kinds of energy distribution laws and calculate for each one the
corresponding number of complexions, just as with gas molecules, then we obtain by
addition of all of the so-obtained complexions, the sought probability W of the given
physical state.

We come faster and easier than by the indicated path to the same goal as follows.  We
divide the given total energy UN into a large number P of equal parts of the size ε, which
we call an energy element.  Then is

NUP
ε

= . (225)

These P energy elements are divided in all possible ways among the N resonators, but in
doing so, it is not of importance, which energy elements, but on the contrary only how
many energy elements are allotted to a given resonator.  If we thus consider the N
resonators numbered and the numerals written next to one another in a row that
corresponds to the respective resonator, and to be sure each numeral as often, as the
number of energy elements comes to, then we obtain through such a row of numerals the
picture of a definite complexion, in which each individual resonator received a definite
energy.  The order of numerals in a row is for the complexion indifferent, since a mere
transposition of numerals does not alter the energy of a specific resonator.  If in the
complexion a resonator possesses no energy at all, then its numeral does not appear at all
in the row.  Accordingly the number of all possible different complexions equals the
number of possible “combinations with repetitions of N elements up to/of the Pth
order/rank”: [? zur P. Klasse]

( 1)!
( 1)! !
N PW
N P

+ −=
−

and this is at the same time the sought probability of the given state of N resonators.  If
for example N = 3, P = 4, than are the pictures of all possible complexions:

1 1 1 1 1 1 3 3 2 2 2 2
1 1 1 2 1 2 2 2 2 2 2 3
1 1 1 3 1 2 2 3 2 2 3 3
1 1 2 2 1 3 3 3 2 3 3 3
1 1 2 3 1 3 3 3 3 3 3 3

The number of all possible complexions is here W = 15, in conformity with the formula.

For the entropy SN of the resonator system we obtain after Equation (203), since N
and P are large numbers, with the omission of the additive constant:

( )!log
! !N

N PS k
N P

+=



and with the use of the Sterling formula (207):

1 log 1 logN
U U U US kN
ε ε ε ε

�� � � �= + + −�� � � �
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and for the entropy of an individual resonator:

1 log 1 logNS U U U US k
N ε ε ε ε

�� � � �= = + + −�� � � �
� � � �	

.

A comparison of this expression with (223) shows, that the energy element ε must be
proportional to the oscillation frequency ν of the characteristic period of a resonator.  We
therefore set

hε ν= , (226)

where h is constant, and thereby obtain

1 log 1 logU U U US k
h h h hν ν ν ν

�� � � �
= + + −�� � � �

� � � �	
(227)

as the solution of the treated problem.

§ 149.  Conspicuous in this result is first of all the appearance of a new universal
constant h with the dimensions of the product of energy and time.  Herein lies an
important difference compared to the expression for the entropy of a gas, where the size
of an elementary domain, which we called dσ, disappears from the final result, since it
affects [geltend macht] only a physically meaningless additive constant.  There can be no
doubt that the constant h plays an undoubted [gewisse] role at an emission center of the
elementary oscillation process, for the explanation of which from the electrodynamic side
our hitherto existing theory affords no closer foothold.1   And yet the thermodynamics of
radiation will have arrived at an entirely satisfactory conclusion, only when the constant h
is understood in its full universal significance.  I may call it the “elementary action
quantity/quantum” or “action element,” because it is of the same dimensions as that
quantity, to which the principle of least action owes its name.

§ 150.  It is of interest to make especially certain, that one [is led?] to the same
expression for entropy as arrived at above, if in connection with [bei] the calculation of
the number of complexions that correspond to a given state, one refers not at the outset to
the energy, which is after all a compound quantity, but on  the contrary goes back directly
to the electromagnetic state of individual resonators, for which the calculation is not quite
as simple, but more general and therefore more rational.  It is essentially a question of the
correct measurement of the “elementary domain” of the state area [Zustandbereich], [da?]
whose size the calculation of the complexions will certainly be based upon, and

                                                
1   See the note in § 109.



consequently in the last analysis the measure furnished for the comparison of the
probability of different states.  The electromagnetic state of a resonator is after § 104
determined by the value of f and 'f .  Thus if one traces in a coordinate plane f as absissa
and 'f  as ordinate, then each point of the plane corresponds to a specific state of the
resonator, and vice-versa.  The size of a surface element in this plane is by no means in
general a measure of the probability, that the state of a resonator will be described by a
point within the surface element.  On the contrary, this simple theorem is valid only if
instead of 'f  as ordinate, one takes the “impulse” coordinate corresponding to f (or the
“momentum” of f  ), namely the quantity

U g
f

∂ =
∂�

that is, following [Eq.] (142): 1 'g Lf= . (228)
Let us consider f and g as the coordinates of a point of the state plane, and ask first for the
magnitude of the probability that the energy of a resonator lies between the values U and
U + ∆U.  This probability is measured by the size of the elementary area [Flächenstücks]
in the plane of the state variables f and g, which is bounded by the curves U = const and
U + ∆U = const.

The energy of a resonator in the state point (f, g) is from (142) and (228) now given
by

2
21 1

2 2
gU K f
L

= + ,

consequently the curve U = const is an ellipse with the semi-major axes:

2    and    2U UL
K

.

Hence its surface area comes to:

2 2 2U L UUL U
K K

π π
ν

= = ,

if one following Equation (166) introduces the oscillation frequency ν of the
characteristic period of a resonator.  In the same way it follows that the surface area of
the ellipse U + ∆U = const. is:

U U
ν
+ ∆ .

The difference between the two areas, the measure of the sought probability, thus

amounts to U
ν

∆ .  If we now consider the entire state plane divided into separate

                                                
1   See for example L. Boltzmann, Gastheorie II, p. 62ff., 1898, or J. W. Gibbs, Elementary Principles in
Statistical Mechanics, Chapter I, 1902.



segments by a large number of such ellipses, so that the the annular elementary areas
[Flächenstücke] bounded by each two successive ellipses are equal, so that

constU
ν

∆ = ,

we then obtain thereby each segment ∆U of the energy which corresponds to equal
probabilities, and which therefore are to be designated as energy elements.  If we set the
size of an energy element ∆U = ε and the constant of the last equation to h, then we return
exactly to the earlier Equation (226), without bringing up Wien’s Distribution Law. At
the same time the elementary quantum of action h appears in a new significance, namely
as the size of an elementary domain in the state-plane of a resonator, valid for resonators
of entirely arbitrary oscillation period.  The condition that the constant h is introduced as
a specific finite size is characteristic of the entire theory developed here.  If one were to
take h as infinitely small, then one would come to a radiation law, which arises as a
special case from the more general (the Rayleigh Law, see § 154 and especially § 166).

§ 151.  Equation (227) leads first in consideration of (198) and (193) to the expression
for the radiation entropy L of a monochromatic linearly polarized ray of specific ratiaion
intensity K and frequency ν:

2 2 2 2 2

2 3 3 3 3 = 1 log 1 logk c c c c
c h h h h
ν

ν ν ν ν
�� � � �

+ + −�� � � �
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K K K K
L (229)

as the definite formulation [? bestimmt Fassung] for Equation (134) of Wien’s
distribution law.

In addition it follows in consideration of (197) and (194) the spatial entropy density s
of a uniform monochromatic unpolarized ray in its dependence on the spatial energy
density u:

2 2 2 2 2
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u u u u
s (230)

as the definite formulation [?] of Equation (119).

§ 152.  We will not in each of the three equations (227), (229), (230) the temperature
T of the resonators respective of [? bez.] the monochromatic radiation introduce and the
energy quantities U, K and u express.  We use one of the equations (199), (135), and
(117), and obtain:

For the energy of the resonator:

1
h
kT

hU
e

ν
ν=
−

. (231)

For the specific intensity of a linear monochromatic polarized ray of frequency ν:
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For the spatial energy density of a linear monochromatic unpolarized ray of frequency ν:
3

3
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If one relates the specific intensity of a monochromatic ray not to the frequency ν but to
the wavelength λ, as usually happens in experimental physics, then one obtains with the
use of (15) and (16) the expression:
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(234)

as the intensity of a monochromatic linearly polarized ray of wavelength λ, which from a
of the temperature T …

§ 153.  For small values of λT (that is, small compared to the constant ch
k ), goes (234

over into the equation:
2
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k Tc hE e λ

λ λ
−

= , (235)

which states the “Wien energy distribution law.”

The specific radiation intensity  K will then after (232):
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and the spatial energy density u after (233):
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For the energy of a resonator of frequency ν one obtains from (231):
h
kTU h e
ν

ν
−

= . (238)

for the entropy S of a resonator as a function of the energy U will after (227), since the

quotient U
hν

 assumes small values:

logkU US
h ehν ν

= − . (239)

These conditions thus hold for every wavelength at sufficiently low temperatures, and for
every temperature at sufficiently short wavelenth.



§ 154.  For large values of λT on the other hand will from (234):

4
ckTEλ λ

= , (240)

a relation that was first set forth by Lord Rayleigh, and that we therefore can call as the
“Rayleigh Radiation Law.”

For the specific intensity K there results from (232):

2

2
h T

c
ν=K (241)

and for the energy density u of a monochromatic ray from (233):

2

3
8 k T

c
π ν=u . (242)

The energy of a resonator will be after (231):

U kT= , (243)

thus simply proportional to the absolute temperature and entirely independent of the
oscillation frequency ν of the characteristic period, as in general from the natural state of
a resonator.

For the entropy S of a resonator as a function if its energy U we finally obtain under

the same assumption, since U
hν

 takes on large values :

log .S k U const= + (244)

It is of interest, to compare the simple for long wavelengths or high temperatures
valid result (243) of oscillation energy of a resonator, with the earlier in (222) calculated
average kinetic energy L of motion of a monatomic molecule at the same temperature.
The comparison yields:

2
3

U L= . (245)

This relationship, and with it also the identity of the constant k for molecular motion and
for radiation processes, is confirmed from an entirely different side in very noteworthy
ways through a consequence of electron theory.  From the views[??] of this theory has
one namely the by us considered linear vibrations of an elementary oscillator set forth as
rectilinear motion of an electron.  Then must after a theorem of statistical mechanics in a
by thermal radiation filled gas by thermodynamic state of equilibrium the average kinetic
energy of this rectilinear electron motion equal be to the third part of the average kinetic
energy of the translational [?] motion of a molecule; for the last motion will through three
from each other independent components be determined, possess thus three degrees of
freedom, while against it the electron oscillations equal to half of the entire vibrational
energy, thus ½ U, on the other side is the third part of the average kinetic energy of the
translational motion of a molecule equal to 1/3 L, thus following from the condition



(245).  If the different resonators with different natural frequencies in a gas exist, then
must they all possess the same average vibrational energy, even so as the average kinetic
energy of tranlational motion of different kinds molecules is the same.  In fact U is after
(243) independent of ν.1

§ 165.  An additional interesting confirmation of the radiation law of black bodies for
long wavelengths and the connection of the radiation constant k with the absolute mass of
a ponderable molecule has recently been discovered by J. H. Jeans,2 from a previously
explored [?] path by Lord Rayleigh,3 which differs essentially from that taken [?] here, in
that he entirely avoids drawing on special interactions between matter (molecules,
oscillators) and aether, and in essence takes up only processes in the irradiated vacuum.
The following theorem of statistical mechanics (see above, § 154) affords the starting
point of this way of thinking.  If irreversible processes take place in a system obeying
Hamilton’s equations of motion, whose state is determined through the values of a large
number of independent variables, and whose total energy is additively composed of
quadratically dependent terms of the different individual state variables, then if these take
place on average always in the direction, that the corresponding partial energies from the
individual independent state variables mutually equalize, so that eventually, by reaching
statistical equilibrium, all on average have become equal to each other.  Thus from this
theorem, the stationary energy distribution in such a system is specified, as soon as one
knows the independent variables by which the state is determined.

§ 166.  A comparison of the last formula with (242) shows, that we would be lead by
statistical mechanics to exactly the same connection among radiation density,
temperature, and oscillation frequency [Schwingungszahl], as through the radiation law
derived from the resonator vibrations, to be sure only for sufficiently long wavelengths,
or else high temperatures.  For only under these conditions is Equation (242) valid.  From
this restriction proceeds for the application of statistical mechanics to radiation processes
a certain/definite [gewisse] difficulty.  For if one would apply the theorem of equal
energy distribution entirely unrestrictedly, then must that relationship hold entirely
generally for all temperatures and frequencies, that that would, as one easily sees, result
in the impossibility of a stationary energy distribution, since the energy density would
along with [as a function of?—zugleich]  the frequency increase without limit.

J. H. Jeans sought to remove this difficulty by the assumption, that in an with emitting
and absorbing substance supplied radiating [durchstrahlten] cavity, no really stable
radiation state exists, but on the contrary that the entire available energy in thermal
radiation over time goes over to ever higher frequencies until eventually the velocity of

                                                
1   See in addition A. Einstein, Drudes Ann. 17, p., 132, 1905.  The there emphasized difficulty standing
against [?] radiation theory follows as a consequence that the condition (245) is there assumed at the outset
as generally valid, while from the here developed theory the mentioned theorem of statistical mechanics
only for sufficiently large values of the product λT can claim validity.  For details concerning this
fundamentally important point see § 166.
2   J. H. Jeans, Phil. Mag., 10, p. 91, 1905.
3   Lord Rayleigh, Nature 72, p. 54 and p. 273, 1905.



molecular motion has become imperceptibly small and the absolute temperature therefore
equals zero.

To such an assumption I cannot however join myself.  For if in every case? [ je] the
theorem taken from everyday experience thereby gains in certainty, that the most diverse
from it drawn consequences as with the most refined measurements in agreement are
demonstrated, then it proves correct by the theorem, that the radiation in a with matter
supplied cavity tends toward a final state with a definite final energy distribution between
matter and aether.  Up to now every in the theory of heat radiation described [?], to part
from  the first glance very bold appearing thermodynamic consequences, beginning from
Kirchhoff’s Law of the proportionality of emission power and absorbing power, is based
on the assumption of the existence of in a thermodynamic sense an absolute equilibrium
state, and everything would cut the ground from under it, if one drops this assumption;
however, [dagegen] never has a consequence of this theorem been found in contradiction
with experience.  On the other side, has itself up to now [bisher] not the trace of an
indication for it shown, which could lead to the conjecture, that in black radiation we do
not have to do with a actual stable state, on the contrary:  already the simple fact, that a
body through thermal radiation can be warmed, that thus radiant energy can go over
without compensation into energy of molecular motion, lets itself from that standpoint as
well only with difficulty [nur schwer] be brought into agreement with the second law of
thermodynamics.

I am therefore of the opinion that this difficulty has arisen only through an unjustified
application of the theorem of equal energy distribution to all independent state variables.
In fact for the justification of this theorem the assumption is essential, that the
distribution of states for all possible systems with given total energy from the outset [von
vornherein] is “ergodic”,1 or briefly expressed, that the probability, that the state of a
system lies in a definite small “elementary domain” (§ 150), is simply proportional to the
size of that domain, if the latter is taken as ever so small [noch so klein].  But this
assumption is not satisfied by the stationary radiant energy; for the elementary domain
cannot be taken arbitrarily small, on the contrary its size is finite, determined by the value
of the elementary action quantum h.  Only if one assumes that the action element h can be
assumed infinitely small, would one arrive at the law of equal energy distribution.  In fact
for infinitely small h, as one sees from Formula (233), the general energy distribution
goes over into the special here derived (269), and it is then valid in general all conditions
of § 154, corresponding to the Rayleigh radiation law.  For, corresponding to the theorem
of equal energy distribution, the energy of all resonators would be equal to one another,
something which in general is not the case.

Naturally the action element h must receive a direct electrodynamic meaning; but of
what sort remains for the present an open question.

§ 190.  Conclusion.  The theory of irreversible radiation processes developed here
explains why, in an irradiated cavity filled with oscillators of all possible frequencies, the
radiation, regardless of its initial conditions, reaches a stationary state:  the intensities and

                                                
1   L. Boltzmann, Gastheorie II, p. 92, 101, 1898.



polarizations of all its components are simultaneously equilibrated in magnitude and
direction.  But the theory still is characterized by an essential gap.  It treats only the
interaction between radiation and oscillator vibrations at the same frequency.  At a given
frequency the continuous increase of entropy to a maximum value, required by the
second law of thermodynamics, is therefore proven on purely electrodynamic grounds.
But for all frequencies taken together the maximum reached in this way is not the
absolute maximum of the system’s entropy, and the corresponding state of the ratiation is
not in general the [state of] absolutely stable equilibrium (see § 27).  The theory does not
at all elucidate the manner in which the radiation intensities corresponding to different
frequencies are simultaneously equilibrated, that is, the way in which the initial arbitrary
distribution settles in time to the normal distribution characteristic of black radiation.
The oscillators which proved the basis for the present treatment influence only the
intensities of the radiation corresponding to their own natural frequencies.  They are not
able, however, to change its frequency if their effects are restricted to the emission and
absorption of radiant energy.1  (this paragraph is Kuhn’s translation; check)

In order to obtain insight into those processes, through which in nature the exchange
of energy between rays of different frequency  is accomplished, requires it in any case
also the investigation of the influence, which a motion of the oscillator exerts on the
radiation process.  For as soon as the oscillators move, comes it to collision between
them, and with each collision must action come into play, which the vibrational energy of
the oscillators still in entirely different and in more radical ways influences, than the
simple emission and absorption of radiant energy.  The end result of all these impact
actions was forseen [??] to be sure with the help of the probability considerations set up
in the fourth chapter; but how in individual and in which period this result takes place,
this to be taught is first the task of a future theory.  Of such a theory are then undoubtedly
also far reaching disclosures about the constitution of the in nature existing oscillators to
be expected, because they in any case must also bring a closer explanation for the
physical significance of the universal action element h (§ 149), which the electric
elementary quantum certainly does not make way for [??] [nachsteht].

                                                
1 See P. Ehrenfest, Wien. Ber. 114 [2a], p. 1301, 1905.


