
SPECIFIC HEATS OF GASES

NOTE: There are several questions that you will need to answer and write up in
your laboratory notebook before you start this experiment—see below.

1 INTRODUCTION

The specific heat of a substance is defined by:

c =
1
N

dQ

dT
(1)

where dQ is the amount of heat that must be added (or removed) from a quantity
N of a substance in order to change its temperature by dT . In general, the value
of c depends upon what constraints are imposed upon the thermal expansion of the
material during the heating process. For example, the substance might be heated
along a path of constant volume. Or, it might be heated along a path of constant
pressure. For gases, differences in path lead to significant differences in the specific
heat. Such differences can be understood in terms of the first law of thermodynamics:

dQ = dU + PdV (2)

or in words,

Heat Added = Change in Internal Energy
+ External Work done on or by the system

For gases the external work obviously depends upon the amount of expansion allowed
during heating. Thus, no work is done on a gas heated along a path of constant
volume; but work is done on a gas heated at constant pressure. In heating most
liquids or solids, the amount of external work is small compared to the amount of
heat absorbed as internal energy, so that the specific heat depends only slightly
on the process. Thus for most liquids and solids, the specific heat at constant
pressure, cp , is commonly given in tables and handbooks as “the specific heat” of
such substances.

In gases, the difference between the two specific heats is more pronounced. In this
experiment, you will measure the ratio of the specific heats of a gas by an indirect
method that will be described later. In dealing with gases, it is usual to consider
molar specific heats: we express the amount of gas N in Equation (1) in terms of
moles. Gases are particularly simple and appropriate substances to study because:

1. To the extent that real gases approximate ideal gases (a very good approxima-
tion in many cases), the internal energy U depends only upon the temperature.
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Except at very low temperatures or at very high pressures, U does not depend
on either pressure or volume.

(The experimental basis for this assertion is the Joule adiabatic free expansion
experiment—make sure you understand why. A theoretical explanation is that
the potential energy arising from intermolecular forces is a negligible fraction
of the internal energy because the molecules are very far apart on the average.
The main contribution to the internal energy is the kinetic energy of molecular
motion, which depends only upon temperature).

2. The dependence of the specific heat upon the nature of the heating process is
pronounced.

3. Theoretical values of the specific heat of an ideal gas can readily be com-
puted. Interestingly, one needs to use quantum mechanics to get the correct
theoretical result.

2 IDEAL GASES

In this section we shall review some of the standard equations governing the behavior
of ideal gases. This material is discussed in more detail in your text, to which you
should refer if any of this material seems hard to understand.

We need to find a relation between the specific heats for an ideal gas along paths of
constant volume and constant pressure. We begin with the former. Equations (1)
and (2) can be combined to obtain the heat absorbed at constant volume (dV = 0):

dQ = dU = NcvdT (3)

where cv is the specific heat at constant volume. (Note: Be sure you can derive
this result.)

For an ideal gas whose internal energy depends only upon temperature, this equation
has special significance; it is a general expression which gives the change in internal
energy dU for any process regardless of whether or not work is done. In other words,
the change in internal energy for any process which involves a temperature change
dT is the same as the heat needed to produce the same temperature change in a
constant volume process.

We now turn to the specific heat at constant pressure for an ideal gas. The equation
of state for an ideal gas is given by the familiar equation

PV = nRT.

If we take the differential of this equation, we obtain

PdV + V dP = nRdT (4)
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We find cp as follows: Using Equations (1) and (2), we obtain for any arbitrary
process

dQ = dU + PdV = ncvdT + PdV. (5)

But if we set dP = 0 in Equation (4), we obtain

PdV = nRdT,

and if we combine the last two equations, we obtain

dQ = ncvdT + nRdT = ncpdT.

Hence we obtain a general result for ideal gases:

cp = cv + R (6)

Again, be sure you can derive this result yourself.

Our experiment will make use of adiabatic processes—expansions (or compressions)
carried out with no exchange of heat between the gas and its surroundings. Con-
sequently we need to review the behavior of an ideal gas undergoing an adiabatic
process. If we set dQ = 0 in Equation (5), we have

dQ = 0 = nCvdT + PdV

If this equation is multiplied by R/cv and added to the gas law [Equation (4)], we
obtain the following expression, which involves only P and V :

γPdV + V dP = 0 (7)

where γ is defined as

γ = 1 +
R

cv
=

cp

cv
. (8)

The second equality is based on Equation (2). If we integrate Equation (7), we
obtain

PV γ = constant (9)

Equation (9) is a relationship between the pressure and volume of an ideal gas
subjected to an adiabatic process. For an isothermal process, of course, PV is
constant.

In this experiment we shall measure the quantity γ directly. We can find values for
cp and cv using Equation (8) and the gas constant R.

3 KINETIC THEORY

The classical theorem of equipartition of energy states that each separate degree of
freedom of an atom or molecule has an energy 1

2kT , where T is the absolute tem-
perature and k is Boltzmann’s constant. Thus a point mass has three translational
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degrees of freedom. See if you can figure out how many degrees of freedom a rigid
body that is not a point mass will have. (Hint: How many independent modes of
rotation are there?)

The equipartion theorem makes the following prediction: For an ideal gas of point
molecules, the internal energy U should be given by

U =
3
2
NkT =

3
2
nRT,

where N is the number of molecules and n the mole number.

A rigid body has three additional rotational degrees of freedom (did you get this an-
swer yourself?), and so would have a total of six degrees of freedom. More generally,
for an ideal gas with f degrees of freedom,

U =
f

2
nRT.

Consequently, using Equation (3), we obtain

cv =
1
n

dU

dT
=

f

2
R

or, using Equation (8),

γ =
f + 2

f
(10)

(Again, be sure you can derive this equation yourself.) This very important result
predicts that the ratio of specific heats will depend on the number of degrees of
freedom of a molecule.

EXERCISE
Work out in your lab notebook
before starting the experiment.

First, calculate the value of γ for a gas of point molecules?

Next, consider a diatomic molecule (such as O2 or N2 to consist of two small spherical
masses connected by a spring. How many degrees of freedom will such a system
have? What value will γ have?

This prediction, based on classical physics will be wrong! And in fact, the experiment
demonstrates one place in which classical physics breaks down—one must use the
principles of quantum mechanics to get a correct prediction for γ. Read what your
text has to say on this point. You may also want to look at Chapter 39 of Richard
Feynman, Lectures on Physics, Volume I.
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4 THE EXPERIMENT

The apparatus is shown in Figure 1. The gas under investigation is contained in
a tank of volume V to which is attached a vertical glass tube in which a ball can
move freely but with very little clearance. Since the captured gas acts as an elastic
cushion or “spring,” conditions suitable for simple harmonic motion are present and
the ball tends to bounce up and down. The amplification needed to intensify these
oscillations is supplied by a small hole in the side of the tube, which releases a puff
of gas whenever the ball rises above it, and the energy needed to sustain them is
supplied by a slow flow of gas from an external source. Since there is little time
for heat flow from the gas to its surroundings during the short duration of a single
oscillation, the adiabatic relations, Equations (7) and (9), are nearly satisfied by the
pressure and volume of the gas.

steel ball
gas in

holes

V

Figure 1

We will use Equation (7) to derive a relationship between γ and the period T of the
simple harmonic motion. The measured values of the period T can then be used to
compute γ.

Let the atmospheric pressure P0 be the pressure in the flask before introducing the
ball. When the ball is at rest in the tube the pressure in the flask is

P = P0 +
mg

A
(11)

where A is the cross sectional area of the ball and mg is the weight of the ball.
If the ball is displaced a short distance y upwards, the pressure drops to a value
Pu < P . When released, the ball will move downward under the action of the
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restoring pressure
dP = Pu − P < 0.

We assume that the volume is sufficiently large and the displacement sufficiently
small that dP/P << 1. The same displacement will result in a slight increase in
volume

dV = yA

The restoring force F on the ball is just the pressure difference times the area:

F = AdP (12)

We now make the process adiabatic. First, differentiate Equation (9) to obtain

γPV γ−1 + V γdP = 0

or
γPdV + V dP = 0.

Next, substitute dV = yA in the last equation and solve for dP to obtain

dP = −γPA

V
y.

Finally, substitute this result into Equation (12) to obtain the following expression
for the restoring force F :

F = −γPA2

V
y.

Newton’s Second Law tells us that

F = ma = m
d2y

dt2

and hence our force equation becomes

d2y

dt2
+

γPA2

mV
y = 0. (13)

But this differential equation describes a simple harmonic oscillatior for which

ω2 =
γPA2

mV
.

(Note: Consult your text’s treatment of the simple harmonic oscillator if you are
not completely clear on this point.)

Thus we have shown that the ball in the tube will undergo simple harmonic motion
with an angular frequency

ω =

√
γPA2

mV
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But ω = 2π/τ , where τ is the period of the oscillation. We substitute for ω and
solve for γ to obtain

γ =
4π2mV

PA2τ2

The cross sectional area of the ball is A = πD2/4. If we substitute for A in our
expression for γ we obtain

γ =
64mV

PD4τ2
(14)

This equation gives us an expression for γ in terms of the quantities that we measure
directly.

5 PROCEDURE

NOTE: You should write a detailed description of the actual procedure
you follow in your laboratory notebook. This description should be
written while you are in the lab doing the experiment . Do NOT rely
on your memory or on rough notes taken on scrap paper!! Do NOT
simply copy the suggested procedure in this writeup—write down what
you actually do!!!

Measure the barometric pressure and the mass and diameter of the ball. Handle
the ball with a kimwipe, so that you don’t get finger oil on it. The ball should
be as clean as possible. Place the ball carefully in the tube. The volume V of the
apparatus is (5.19 ± .01) × 103 ml.

Level the apparatus so that the glass tube is vertical and the ball will move up and
down without touching the inside walls. If the tube is not vertical, the ball will
rotate rapidly, and may even tap against the side of the tube. Start the gas flowing
slowly and increase the flow until the ball rises slowly in the tube. When the ball
reaches the holes in the middle of the tube it should start to oscillate.

It is desirable to keep the amplitude of oscillation low, say between one and five
centimeters. You have two adjustments available to you to obtain the desired am-
plitude: The first is the rate of flow of the gas, and the second is the size of the
opening in the middle of the tube. There are four holes around the middle of the
tube and total size of the opening can be controlled by taping zero, one, two or three
of the holes shut. After all the adjustments are made, the ball should be oscillating
with small amplitude about the holes.

The expression for γ depends on the period squared. Hence any error in measuring
τ will be doubled in calculating γ. (You will prove this result later.) Time one
hundred oscillations of the ball; be sure to let one full period pass before you start
counting after you start the stop watch. After you have finished, let your partner
time one hundred oscillations also. If your two numbers are in disagreement then
try again.

Do the experiment for three gases: air, oxygen, and argon.
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For one gas, repeat your measurements of the period for different amplitudes. Does
the period depend on amplitude? If it does would it be worthwhile plotting period
versus amplitude to find the zero amplitude period?

Repeat your measurements for different locations of the equilibrium point. Does this
asymmetry with respect to the holes in the tube affect the period of the motion?
If the period is affected by nonsymmetric oscillations, what will fluctuations in line
pressure do to your results?

Before you can obtain a value of γ from Equation (14) you need to calculate the
pressure from Equation (11). Be sure you convert the pressure to appropriate metric
units.

6 DATA ANALYSIS

Calculate a value of γ for each gas used and compare this value with that predicted
by Equation (10). Summarize your results in a table.

You can check the consistency of your results in another way. The compression and
rarefactions of the air during the passage of a sound wave are also adiabatic. The
velocity of sound in a gas is given by

v =

√
γRT

M

where R is the universal gas constant, T is the absolute temperature and M is the
molecular weight. Look up the velocity of sound and calculate γ from the formula.

7 ERROR ANALYSIS

We need to calculate the error in γ due to the error in the measured quantities.
Consider a calculated quantity f that is a function of the measured quantities x, y,
z, . . . . To see how the uncertainties in the measured quantities affect the error in
f(x, y, z, . . .), we begin by calculating df :

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz . . .

Thus if the uncertainties ∆x, ∆y, ∆z, . . . are small, we will have

∆f ∼= ∂f

∂x
∆x +

∂f

∂y
∆y +

∂f

∂z
∆z . . . (15)

(More rigorously, you can also think of this equation as a first-order Taylor’s expan-
sion of f.)

Equation (15) is thus a first step to seeing how errors in the measured quantities
affect the error in the calculated quantity f . But it is only a first step! Note, for
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example, that the terms in Equation (15) can have different signs; but one would
not ordinarily expect that one error would cancel another.

It can be shown that a better approximation to ∆f is given by

∆f ∼=
√(

∂f

∂x

)2

∆x2 +
(

∂f

∂y

)2

∆y2 +
(

∂f

∂z

)2

∆z2 . . . (16)

(See for example John R. Taylor, An Introduction to Error Analysis, Chapter 3.
Most textbooks on error analysis or elementary statistics also derive this equation.)

Use Equation (16) to derive an expression for ∆γ. Your final equation should be of
the form

∆γ

γ
= f

(
∆P

P
,
∆V

V
, . . .

)
(17)

Once you have derived this expression, use it to find the uncertainties in your values
of γ. Do your calculation step by step, and see if any one term dominates.
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