The Hydrogen Atom:
Wave Functions,
Probability Density "pictures"

http://panda.unm.edu/courses/finley/P262/Hydrogen/WaveFcns.html

Table 1: Wave functions and their components
n $\ell$ m orbital shapes
1 0 0 ${1\over \sqrt{\pi}}\left({1\over a_0}\right)^{3/2}e^{-r/a_0}$ 1s
2 0 0 ${1\over 4\sqrt{2\pi}}\left({1\over a_0}\right)^{3/2}\left(2-{r\over a_0}\right)e^{-r/2a_0}$ 2s
2 1 0 $ {1\over
4\sqrt{2\pi}}\left({1\over a_0}\right)^{3/2} {r\over
a_0}e^{-r/2a_0}\cos{\theta}$
2 1 $\pm 1$ ${1\over 8} \sqrt{1\over \pi} \left({1\over a_0}\right)^{3/2}{r\over a_0}e^{-r/2a_0}\sin{\theta}e^{\pm i\phi}$
3 0 0 ${1\over 81\sqrt{3\pi}}\left({1\over a_0}\right)^{3/2}\left(27 - 18{r\over
a_0}+2(r/a_0)^2\right)e^{-r/3a_0}$ 3s
3 1 0 ${1\over
81}\sqrt{2\over \pi}\left({1\over a_0}\right)^{3/2}\left(6 -
{r\over a_0}\right){r\over a_0}e^{-r/3a_0}\cos{\theta}$
3 1 $\pm 1$ $ {1\over
8\sqrt{\pi}}\left(1\over a_0\right)^{3/2}\left(6-{r\over a_0}\right){r\over a_0}e^{-r/3a_0}\sin{\theta}e^{\pm
i\phi}$
3 2 0 ${1\over
81\sqrt{6\pi}}\left({1\over a_0}\right)^{3/2}{r^2\over a_0^2}e^{-r/3a_0}\left(3\cos^2{\theta}-1\right)$
3 2 $\pm 1$ ${1\over 81\sqrt{\pi}}\left({1\over a_0}\right)^{3/2} \left({r\over a_0}\right)^2e^{-r/3a_0}\sin{\theta}\cos{\theta}e^{\pm i\phi}$
3 2 $\pm 2$ ${1\over
162\sqrt{\pi}} \left({1\over a_0}\right)^{3/2} \left({r\over a_0}\right)^2e^{-r/3a_0}\sin^2{\theta}e^{\pm 2i\phi}$