Goals for 125:

- 1. Understand basics of atomic structure and periodic trends
 - a. Atomic orbital filling
 - Write electron configurations for atoms and ions
 - Recognize shapes and sizes of atomic orbitals and determine energies of atomic orbitals
 - Relate electron location probability (electron density) based on orbital number and shape
 - b. Sub-atomic particles and charges and masses
 - Determine the number of protons, neutrons and electrons in a given isotope of an atom or ion
 - c. Periodic trends for atomic radii and EN
 - Predict the relative sizes of atoms and ions
 - Predict relative ionization energies
 - Rank atoms according to electronegativity
- 2. Understand different bonding models and motifs in a variety of chemical structures (metals, ionic compounds, molecular compounds, coordination compounds, biomolecules) and how electronic structure affects properties
 - a. Metallic Bonding
 - Explain metallic bonding and apply the delocalized electron model to the properties of metals such as malleability, ductility, conduction of heat
 - Describe how the differences between metallic bonds and ion-ion interactions influence the bulk properties of metallic and ionic solids such as conductivity and malleability
 - b. Ionic Bonding
 - Use Coulomb's law to determine the strength of attractive/repulsive force between two ions
 - Describe how the strength of ionic interactions affect properties such as lattice energy, melting points, bond length, solubility, etc.
 - Write simple empirical formulas based on balanced charge
 - c. Lewis Structures/Molecular Bonding
 - Draw Lewis structures for molecules and ions
 - Calculate formal charge
 - Represent Lewis Structures as skeletal structures or line-bond structures
 - Draw a dipole moment on the molecule based on electronegativities of the atoms
 - Describe electron (charge) distribution between bonded atoms
 - Predict the overall polarity of a molecule based on structure and dipole moments
 - Draw resonance structures of small molecules
 - d. Ligand-Metal Bonding
 - Draw Lewis structures for common ligands

- Determine the donor atom(s)
- Determine the charge on the metal
- Determine the electron count of a metal in a coordination complex
- e. Molecular Orbital Theory for Molecular Bonding
 - Draw the possible orbital combinations for sigma and pi bonds
 - Fill the electrons in a simple diatomic MO diagram
 - Use an MO diagram to predict bond order
 - Identify the hybridization of an atom
 - Fill electrons in MO diagrams for conjugated/aromatic systems
 - Predict relative energy levels of molecular orbitals
 - Use MO diagrams to explain properties such as magnetism, bond rotation, bond lengths, aromaticity, stability, etc.
- 3. Understand the 3D structures of a variety of chemical structures and how the structure affects the properties
 - a. Unit cells and packing
 - Illustrate the differences between packing patterns (Cubic vs. Hexagonal)
 - \circ Closest packing: HCP and CCP
 - Cubic packing: simple cubic and body centered cubic
 - Given a unit cell:
 - \circ $\;$ Determine the number of ions or atoms in the unit cell
 - \circ $\;$ Describe the types of holes occupied in the unit cell $\;$
 - Determine the coordination number of the atoms or ions in the unit cell.
 - Given a formula and coordination numbers, add atoms to a unit cell in the right placement and ratio
 - Use information about the packing of atoms in a unit cell to explain properties of metallic and ionic compounds such as material density, conductivity, thermochromic behavior, etc.
 - b. Coordination Numbers/Geometries of Transition Metal Complexes
 - Determine the coordination number of the central metal
 - Determine the geometry of the complex
 - Discuss factors that influence the type of geometry, such as square planar vs. tetrahedral
 - c. IMF and solubility and other physical properties
 - Identify the different types of intermolecular interactions in a given solution
 - Predict the strengths of intermolecular interactions of homogeneous and heterogeneous mixtures
 - Evaluate the effect of electron density on physical properties such as solubility, melting point, location of dominating IMF, etc.
 - d. Isomerism in organic, biomolecules & coordination cmpds
 - Identify differences between kinds of isomers

- Draw molecules in three dimensions: wedge-dash convention, Newman projection, diamond lattice projection
- Predict most stable conformation based on assessment of 6- and 7- atom interactions
- Identify relationships between geometric isomers of coordination compounds and molecular compounds
- Identify relationships between stereoisomers: enantiomers and diastereomers
- Identify chiral centers and label stereochemical configurations: R, S
- e. Macromolecular structures of network solids, polymers, biomolecules
 - Identify factors that hold macromolecular structures in a specific shape
 - Identify discrete versus aggregate or extended structures
 - Distinguish between 2D and 3D macrostructures, metal network, ionic network, and molecular network
 - Identify different classes of biomolecules
- 4. Learn a conceptual approach for acid-base chemistry and how structure affects reactivity
 - a. Lewis Acid/Base
 - Identify compounds as Lewis Acids or Bases
 - Predict products of Lewis Acid/Base Reactions
 - b. Bronsted-Lowry Acidity/Basicity
 - Identify compounds as Bronsted Acids or Bases
 - Recognize the structural features that affect acid/base reactivity such as sterics, polarizability, electronegativity, resonance, etc.
 - Identify the most acidic proton on a molecule
 - Rank the strength of bases/acids based on structural features
 - Predict products of simple proton transfers
 - c. Introduction to Curved Arrow Notation
 - Draw an arrows to predict electron flow for acid-base reactions
 - Show bond-making and –breaking steps using arrow notation
 - d. Qualitative concepts of equilibria
 - Use pKa to predict direction of reaction
 - Identify acids and bases that are compatible with aqueous solution
- 5. Learn problem-solving skills through modern applications of chemistry
 - a. Apply techniques learned in the analysis of small molecules to more complex systems
 - Recognize similar structural features in new molecules
 - Recognize similar bonding motifs in new molecules
 - Predict behavior of molecules based on structural features and/or bonding motifs