Blood vessels and blood pressure

I. Introduction

- distribution of CO at rest

II. General structure of blood vessel walls

- walls are composed of three distinct layers:

1. Tunica intima is the innermost layer; it is composed of single layer of endothelial cells and a thin layer of loose connective tissue (basement membrane, BM)

2. Tunica media is the middle layer; it is composed of a mixture of circularly arranged smooth muscle cells and sheets of elastin, the proportion of each depending on artery type; the smooth muscle cell layer is innervated by vasomotor fibers (ANS), innervation can produce vasoconstriction

3. Tunica adventitia is the outermost layer; it is composed of loosely woven connective tissue infiltrated by nerves, blood vessels and lymphatics

III. Basic organization of the CV system

- elastic arteries -- conducting vessels
- muscular arteries -- distributing vessels
- arterioles -- resistance vessels
- capillaries -- sites of nutrient, fluid, and gas exchange with tissues
- venules
- small veins --> large veins -- capacitance vessels

IV. Hemodynamics overview

A. Blood flow, blood pressure, resistance

- blood flow: volume of blood flowing through vessel/organ/circulation per minute; as far as systemic circulation, blood flow = CO

- blood pressure: pressure gradient between 2 points in vasculature

- resistance: opposition to flow due to friction

 Flow (F) = Pressure (P)/ Resistance (R)
B. Factors influencing resistance

\[R = 8\eta L/\pi r^4 \]

- viscosity (\(\eta\)) -- friction of fluid molecules as they slide over one another
 - hematocrit
 - plasma protein concentration
 - constant for CV system
- length -- longer the vessel, greater surface area, greater resistance to flow
 - constant for CV system
- radius -- changing radius greatly alters surface area of vessel exposed to a given volume of blood
 - decreasing radius -- tremendously increases resistance
 - increasing radius -- tremendously decreases resistance

- by simplification: \(R = 1/r^4 \)

V. Arteries -- functional characteristics

A. Low-resistance vessels -- blood rapidly moves from heart to tissues

B. Pressure reservoirs -- provide driving force for blood during diastole, secondary pumps

- note that despite contraction-relaxation cycles, blood pressure and blood flow through capillaries does not fluctuate -- not pulsatile

 - during systole more blood enters arteries from heart than leaves them due to resistance of smaller vessels downstream
 - arteries expand temporarily, hold "excess" ejected blood
 - during diastole heart does not pump blood into arteries, stretched arterial walls recoil, "excess" blood pushed to vessels downstream
 - thus arteries play role in dampening pressure fluctuations occurring during cardiac cycle in ventricles

C. Arterial pressure

- arterial pressure not constant as volume of blood entering arteries during systole is 1/3 greater to volume of blood leaving arteries during diastole

 - systolic pressure: highest pressure in arteries at peak of ejection (120 mm Hg)
 - only 1/3 of blood that enters arteries during this period leaves these vessels
 - diastolic pressure: lowest pressure in arteries during cardiac cycle (70 mm Hg)
 - lowest pressure achieved in arteries as blood is draining into remainder of vessels during diastole
 - pulse pressure: systolic pressure - diastolic pressure
- mean arterial pressure: (map) average pressure in artery throughout 1 turn of the cardiac cycle
 - (diastolic + 1/3PP)

VI. Arterioles

A. Functional characteristics

- media proportionately the predominant layers, composed primarily of smooth muscle
- are the major resistance vessels of the vascular tree

- mean arterial pressure before arterioles is 93 mm Hg; pressure of blood leaving arterioles is 37 mm Hg
- arteriolar resistance also converts pulsatile systolic-diastolic pressure swings in arteries to non-pulsatile pressure seen in capillaries
- resistance changes achieved by varying radius of vessels
 - small change in radius, large change in resistance to blood flow and thus blood pressure
 - vasodilation
 - vasoconstriction
 - thus arterioles are prime controllers and regulators of blood pressure

- arterioles display a state of partial constriction, vascular tone -- establishes a baseline resistance to blood flow

- state of partial constriction largely due to:

 - sympathetic fibers innervate media -- vasomotor fibers
 - tonically discharge
 - release norepinephrine -- in most beds maintains basal vascular tone
 - no parasympathetic innervation to arterioles
 - vasoconstriction -- increase sympathetic discharge
 - vasodilation -- decrease sympathetic discharge
 - autoregulatory mechanisms
B. Local control of arteriolar radius -- **autoregulation**: capacity of tissues to regulate own blood flow

- variably distributes cardiac output among various systemic beds so that blood flow matches tissues' metabolic needs

- **metabolic hypothesis**
 - accumulation/absence of metabolites produces vasodilation/vasoconstriction of arterioles
 - the following produce relaxation of arteriolar smooth muscle (arteriolar dilation):
 - increased pCO₂
 - decreased pO₂
 - increased lactic acid
 - adenosine release
 - increased K⁺
 - increased temperature

- **myogenic hypothesis**
 - vessel responds to increased stretch by reflex contraction
 - vessel responds to decreased blood flow by myogenic relaxation -- increases blood flow through area

- example of reactive hyperemia -- response of blood vessel to occlusion
 - what happens when occlusion removed
 - what is role of myogenic and metabolic autoregulation processes in response?

C. Systemic control of arteriolar radius

1. control by hormones- systemic regulation of arteriolar diameter

- **norepinephrine/epinephrine**
 - norepinephrine
 - released by vasomotor fibers in arteriole media
 - high affinity for α receptors -- generalized vasoconstrictor effect
 - can bind β receptors -- vasodilatory effect
 - epinephrine
 - most abundant of medullary hormones
 - high affinity for β receptors -- vasodilatory effect
 - dilates vessels in skeletal muscle

- **atrial natriuretic factor (ANF)**
 - decreases blood pressure by promoting fluid loss from plasma

- **vasopressin (ADH)** -- elevates blood pressure
 - promotes water reabsorption in kidneys
 - vasoconstrictor

- **angiotensin II**
- part of renin-angiotensin-aldosterone cascade
- important in maintenance of blood pressure during hemorrhage and shock
 - histamine
 - inflammatory response

2. Neural regulation - systemic regulation of cardiovascular function

- Flow (F) = Pressure (P)/ Resistance (R)
- \(CO = \frac{BP}{R} \rightarrow CO = BP \times r^4 \)
- since resistance is varied by altering arteriolar diameter, resistance is peripheral in circulation -- total peripheral resistance (TPR)
- \(CO = \frac{BP}{TPR} \rightarrow BP = CO \times TPR \)
- thus can vary blood pressure by changing cardiac output and varying resistance of arterioles
 - vasomotor tone maintains vascular tone of arterioles
 - maintains adequate driving pressure of blood to all systemic beds
 - if all arterioles dilate, blood pressure falls substantially, lose adequate driving force for blood flow
 - individual beds can use autoregulatory and local mechanisms to fine adjust amount of blood flow -- however need pressure head to drive flow

IV. Capillaries

- sites of exchanges (solutes and fluids) between blood and the tissues
- exchanges between blood and the tissues are passive
 - diffusion -- solutes
 - bulk flow -- fluid
- capillary structure permits such functions:
 - diffusing molecules travel very short distances between blood and ISF and cells
 - capillaries very narrow
 - capillaries are very thin -- 1 \(\mu \)m diameter
 - single layer of flattened endothelial cells
 - total surface area of capillaries is tremendous
 - influence on velocity of blood flow: recall that velocity is displacement per unit time (cm/s) while flow is volume per unit time (cm\(^3\)/s)
 - velocity (V) is proportional to flow (F) divided by area
 - \(V = \frac{F}{A} \text{ (cm/s) = cm}^3/\text{s/cm}^2 \)
• structure of capillary wall
 o exchanges possible across cell
 ▪ diffusion
 ▪ vesicular transport
 o exchanges possible between cell junctions
 ▪ exact amount regulated by state of junction -- tight junction integrity and dynamics
 o exchanges possible via "pores" in cells, fenestrations

- a capillary bed and regulation of capillary perfusion:

 • arteriole
 • metarteriole -- thoroughfare channel
 • true capillaries
 o precapillary sphincters -- open or close in response to metabolic status of tissue; work with arteriole autoregulation in control of perfusion through vascular bed
 • post-capillary venule

- capillary exchanges -- diffusion of solutes across capillary wall

 • exchanges occur between plasma and ISF (80% ECF)
 o composition of ISF reflects composition of plasma (20% ECF)
 ▪ thus regulate composition of plasma to regulate composition of ISF (most ECF)
 • exchanges of solutes by simple or facilitated diffusion

- capillary exchanges -- bulk flow

 • movement of protein-free plasma out of capillary into ISF (filtration) at arterial end of capillary; movement of protein-free fluid from ISF into capillary (reabsorption) at venule end of capillary
 • occurs because of differences between hydrostatic and osmotic pressures of plasma and ISF
 o outward pressures
 ▪ capillary hydrostatic pressure
 ▪ ISF osmotic pressure
 o inward pressures
 ▪ plasma osmotic pressure
 ▪ ISF hydrostatic pressure
 • in most capillaries outward pressures prevail and arteriolar end and inward pressure greater at venule end
 o some capillaries reabsorption along full length
 o some capillaries filtration along full length
 • note that on average more fluid filters out at arteriole end than at venule end
 o this fluid returned to circulation by lymphatics
- clinical example of capillary dynamics -- edema
 - reduced concentration of plasma proteins
 - renal failure
 - liver failure
 - protein deficient-diet
 - increased permeability of capillary walls
 - increased venous pressure
 - pregnancy -- edema in legs
 - blockage of lymph vessels -- elephantiasis

V. Veins

- veins are capacitance vessel -- on average 64% of blood in circulatory system at one time found in veins

- pressure gradient that drives flow through veins very small; veins have structural adaptation that allow them to perform their function -- return blood to heart -- despite this low gradient:
 - very thin walls, little elastin
 - little myogenic tone
 - large radii -- offer very little resistance to flow
 - have valves -- unidirectional flow of blood through veins
 - valve dysfunction
 - varicose veins
 - hemorhoids

- factors that affect venous capacity will influence venous return and thus cardiac output (Starling's law):
 - effect of vasomotor sympathetic tone on venous return
 - vasoconstriction decreases venous capacity and increases venous return
 - vasodilation increases venous capacity and decreases venous return
 - effect of skeletal muscle activity on venous return
 - increased skeletal muscle activity milks veins -- increases venous return
 - effect of respiratory pump
 - inspiration -- intra-thoracic pressure less than intra-abdominal -- suction of blood to heart
 - cardiac suction
VI. Regulation of blood pressure

1. Short term regulatory mechanisms: neural regulation of BP

- cardiovascular center (CV) in the medulla:
 - Vasomotor center (VM): gives rise to sympathetic fibers that innervate smooth muscles of arterioles and veins; tonically discharges, arterioles always partially constricted, vasomotor tone; increased sympathetic activity will increase vasomotor tone (vasoconstriction); decreased sympathetic activity will decrease vasomotor tone (vasodilation)
 - Cardioaccelerator center (CA): gives rise to sympathetic fibers that when activated increase HR and contractility of cardiac muscle
 - Cardioinhibitory center (CI): gives rise to parasympathetic fibers that cause a decrease in HR.

1. innervation of blood vessels (sympathetic)

adrenergic fibers

-origin in VM center (VC)

2. innervation of heart (sympathetic)

-origin in VM center (CA)

3. innervation of heart (PS)

-origin in CI center

-examine tonic discharge of each

 - tonic discharge of VC- affects to veins and arterioles
 - tonic discharge of CA vs CI- which one predominates

4. Afferents to cardioregulatory center

a. baroreceptors

b. chemoreceptors -- role in blood pressure regulation