METABOLISM

I. Introduction.

- metabolism: all chemical reactions necessary to maintain life; these processes are either anabolic or catabolic.
- A. Anabolism: reactions that build large molecules from smaller ones (i.e., aa form proteins)
- B. Catabolism: reactions in which complex molecules are broken down into simpler ones (i.e., events of cellular respiration).

II. Carbohydrate metabolism.

A. General comments.

- all food carbohydrates eventually are converted to glucose; glucose breakdown is oxidation of glucose
- recall that oxidation is a loss of electrons, reduction is a gain of electrons.
- oxidation of glucose involves a stepwise removal of pairs of hydrogen atoms from substrate molecules, passing them on to electron acceptors.
- two major electron acceptors are NAD+ and FAD.
- the bulk of energy (ATP) from glucose oxidation results from use of NADH+H+/FADH₂ to set up a hydrogen ion gradient used to drive ATP synthesis.
- glucose oxidation: $C_2H_{12}O_6 + 6O_2 -----> 6H_2O + 6CO_2 + 38ATP + heat$
- this process involves glycolysis, Krebs Cycle, and electron transport chain (ETC).
- -there are two means of ATP production throughout glucose oxidation: substrate level phosphorylation where high energy phosphate groups are transferred directly from phosphorylated molecules to ADP; oxidative phosphorylation which is carried out by ETC proteins; uses NADH+H+/FADH2 to set up a hydrogen ion gradient, the dissipation of which leads to ATP synthesis.

B. Glycolysis.

- series of 10 chemical steps where one glucose molecule is converted into two pyruvate molecules; net yield is 2 ATP/glucose molecule.

- this process is anaerobic (doesn't need oxygen).
- 1. Sugar activation: glucose committed to glycolysis; 2 ATP molecules are used.
- 2. Sugar cleavage: a six-carbon sugar converted to two three-carbon sugars.
- 3. Sugar oxidation and formation of ATP: begin stepwise removal of pairs of hydrogen atoms passing them onto electron acceptors; net yield is 2 pyruvate, 2 NADH+H+, and 2 ATP.
 - in aerobic conditions, pyruvate is moved in the direction of the Krebs cycle; in anaerobic conditions pyruvate is converted into lactic acid.

C. Krebs cycle.

- occurs in the mitochondrial matrix; fueled by the pyruvate from glycolysis.
- 1. Pyruvate converted to acetyl CoA: step that links glycolysis to the Krebs cycle; it involves three reactions all catalyzed by one enzyme, pyruvate dehydrogenase:
 - a. decarboxylation: pyruvate has one carbon removed, released as CO2.
 - b. oxidation: removal a pair of hydrogen atoms.
 - as a result of the decarboxylation and the oxidation, acetic acid is produced.
 - c. acetic acid reacts with coenzyme A to form acetyl CoA.

- 2. Acetyl CoA enters the Krebs: series of events take place as cycle moves through 8 consecutive steps.
 - -2 decarboxylations; account for the 2 Cs that came into Krebs; produce carbon dioxide.
 - 4 oxidations: four transfers of hydrogen atom pairs from Krebs intermediates to electron acceptors
 - 1 substrate level phosphorylation: 1 ATP produced.

- Summary:

per pyruvate	per glucose
3 CO2	6 CO2
4 NADH + H ⁺	8 NADA + H ⁺
1 FADH2	2 FADH2
1 ATP	2 ATP

- D. Electron transport chain (ETC) and oxidative phosphorylation:
 - at this point we have electron acceptors loaded down with electrons; they are "worth" a lot of energy
 - a group of proteins in the inner mitochondrial membrane are arranged in a sequence of decreasing energy states.
 - the electron acceptors (from glycolysis and Krebs) deliver electrons and protons at the "top" level of the chain to one of the protein electron acceptors; the protons (H+) escape into the matrix and electrons are passed down the chain into successively lower energy levels, with a release of energy in every step.
 - the final electron acceptor (at lowest point in chain) is oxygen; it accepts electrons and combines with hydrogen to form water.
 - electrons are delivered at a high energy level in the chain to molecules with lower affinity (desire) for electrons than oxygen (which has the highest affinity for electrons); thus as electrons are passed on each successive carrier has greater affinity for electrons than the one preceding it; oxygen therefore helps to "pull" the electrons down the chain; if there is no oxygen present, then there would be no final acceptor for electrons and no gradient of energy levels would be maintained.

- the stepwise release of energy is used to pump the protons from the matrix, across the membrane into the intermembranous space.
- therefore a proton gradient is established across the inner mitochondrial membrane, an electrochemical gradient.
- this dissipation of the electrochemical gradient (as protons move from area of high concentration to area of low concentration) releases energy used in the production of ATP.
- the protein channel, ATP synthase, allows the protons to move down the electrochemical gradient and drive the process by which ATP is synthesized from ADP and P.
- for every NADH+H+ there are 3 ATP formed; for every FADH₂, there are 2 ATP formed; why?

E. Glycogenesis / Glycolysis.

1. Glycogenesis:

- if more glucose is available than can be immediately oxidized, then glycogen is produced.
- under hormonal control.

2. Glycolysis:

- when blood glucose levels drop below the amount needed to maintain the body's needs, glycogen is broken down and glucose is produced.
- tight hormonal control.