### Blood

- I. Composition/function.
- A. Introduction.
- 8% body volume; specialized connective tissue where cells are formed elements and plasma is extracellular matrix (ECM); the two ECM components are ground substance (serum) and fibers (soluble fibrinogen).
- B. Composition.
- 1. Formed elements (42% in females, 45% in males).
  - a. RBC 99.9% of formed elements
  - b. WBC.
  - c. platelets.
- 2. Plasma (58% for women, 55% for men).
  - a. water.
  - b. plasma proteins.
  - c. other solutes.
- C. Functions of blood.
  - Distribution of gases, nutrients, removal of waste products, hormone transport.
  - Regulation of body temp, pH, fluid volume.
  - Protection: clotting, prevention of infection.

- II. Blood plasma.
- A. Composition.
- 1. Water: 90-92%.
- 2. Solutes.
  - a. Proteins 7-8%
    - (i) albumins (60%): major contributors to osmotic pressure of blood; transport of fatty acids, thyroid and steroid hormones.
    - (ii) globulins (36%)
    - transport globulins
    - immunoglobulins
    - (iii) clotting proteins (4%).
    - (iv) other plasma proteins: hormones, enzymes.
  - b. "other solutes".
  - nonprotein nitrogenous substances.
  - nutrients.
  - electrolytes.
  - respiratory gases.
- III. Formed elements: erythrocytes, leukocytes, platelets.
- all produced in bone marrow in adult from a pluripotent cell the hemocytoblast; hemocytoblast gives rise to myeloid stem cells (MSC) or lymphoid stem cells (LSC); MSC will give rise to RBC, WBC, platelets; LSC gives rise to lymphocytes.
- A. Erythrocytes: have biconcave shape which gives them a huge surface area relative to volume; lack nucleus, organelles, contain predominantly hemoglobin.
- 1. Function of gas transport.
- a function of hemoglobin which binds easily and reversibly to oxygen.
  - a. Structure of hemoglobin.
    - (i) globin is protein unit: four polypeptide chains, each bound to heme group.

- (ii) heme is a complex ring structure which has atom of iron in its center; iron binds reversibly to oxygen.
- b. Oxygen transport.
- a hemoglobin molecule can transport 4 molecules of oxygen (oxyhemoglobin -- deoxyhemoglobin); most of oxygen in blood is bound to hemoglobin.
- c. Carbon dioxide transport.
- 20% of CO<sub>2</sub> in blood is bound to amino acids of hemoglobin, not heme.
- 2. Production of erythrocytes (erythropoiesis).
- occurs in bone marrow.
- phase 1: ribosome production.
- phase 2: hemoglobin synthesis/accumulation.
- phase 3: ejection of nucleus.
- note that reticulocyte is released from bone marrow to circulation, mature RBC only appears about two days later.
- 3. Erythropoiesis.
  - a. Hormonal control.
  - occurs by differential release of erythropoietin by kidneys in response to changing levels of O<sub>2</sub> in blood; involves negative feedback regulation.
  - note that number of RBC in blood does not control erythropoiesis, control is based on ability to transport enough  $O_2$  to meet tissue demands.
  - b. Dietary requirements.
  - amino acids, iron. vitamins ( $B_{12}$ , folic acid).
- 4. Destruction of erythrocytes.
- usually occurs in large circulatory channels (spleen, liver).
- as cells age, they become abnormally shaped, fragment engulfed by macrophages; iron and amino acids are recycled, heme used for synthesis of bile by liver.
- 5. Erythrocyte disorders anemias: conditions in which blood has abnormally low O2 carrying capacity; a symptom of a disorder, can have several causes.
  - a. Insufficient number of RBC.
    - hemorrhagic anemias.
    - hemolytic anemias.
    - aplastic anemias.

- b. Decreases in Hb content.
  - iron-deficiency anemia.
  - pernicious anemia.
- c. Abnormal hemoglobin.
  - thalassemias.
  - sickle cell anemia.
- 6. Erythrocyte disorders polycythemias: abnormal excess of erythrocytes, increased blood viscosity.
  - polycythemia vera.
  - secondary polycythemias.
- B. Leukocytes: true cells, granulocytes and agranulocytes.
- function in body defense against pathogens.
- characteristics:
  - amoeboid movement.
  - diapedesis.
  - positive chemotaxis.
  - phagocytosis.
- 1. Granulocytes: contain specialized membrane-bound granules, lobed nuclei; all originate from MSC.
  - a. Neutrophils: most common WBC, have a mix of basophilic and acidophilic granules..
  - first WBC to arrive at site of infection, very mobile; engulfs pathogen, respiratory rate increases dramatically (respiratory burst); phagocytic vesicle fuses with lyzosomes and granules containing defensins (degranulation); action of both destroy ingested pathogen.
  - secrete prostaglandins and leukotrienes.
  - die after phagocytosis of a dozen or so bacteria, death releases chemotactic compounds.
  - b. Eosinophils: have acidophilic granules.
  - granules have a special variety of digestive enzymes lacking those that can digest bacteria.

- primary mode of attack involves exocytosis of toxic compounds onto target surface (multicellular organism too large to be phagocytosed, parasitic worms.
- attack objects coated in antibodies.
- also reduce severity of allergic reactions by phagocitizing Ag-Ab complexes.
- c. Basophils: rarest WBC.
- cytoplasm contains histamine and heparin granules.
- migrate to site of injury, cross capillary endothelium, discharge granules
- histamine release.
- 2. Agranulocytes: lack obvious granules, have kidney-shaped or round nuclei.
  - a. Lymphocytes: have very large spherical nuclei with small rim of cytoplasm.
  - most found in lymph nodes, spleen, marrow.
  - participate in immune response, T-lymphocytes in cell-mediated immunity, B-lymphocytes in humoral immunity.
  - b. Monocytes: the largest WBC, large nucleus, kidney-shaped.
  - only remain in circulation for 24 hours, enter peripheral tissues where they mature into macrophages. the body's greatest scavengers; very aggressive phagocytic cells.
  - when encounter invader release many chemotaxic and growth factors that attract other WBCs and stimulate tissue repair.
  - important participants of immune response.
- 3. Production of leukocytes (leukopoiesis).
- hormonally stimulated.
- hematopoietic hormones, colony stimulating factors (CSFs) prompt WBC precursors to divide and mature, enhance protective potency of WBCs.
  - stem cell growth factor.
  - macrophage-monocyte CSF (M-CSF).
  - granulocyte CSF (G-CSF).
  - granulocyte-macrophage CSF (GM-CSF).
  - multi-CSF.

- CSFs are released in response to specific chemical signals in the environment and are closely tied to the immune response.
- leukocyte production: myeloid stem cells give rise to granulocytes and monocytes; lymphoid stem cells give rise to lymphocytes.

# 4. Leukocyte disorders.

- a. Leukemia: excessive production of abnormal leukocytes
- renegade leukocytes member of one clone, remain unspecialized, mitotic, suppress and impair marrow function.
- named according to abnormal cell type primarily involved; myelocytic leukemia, lymphocytic leukemia.
- acute leukemia: (quick advancing), derived from blast-type cells like lymphoblast; usually affects children.
- chronic leukemia: (slow advancing), involves proliferation of later cell stages, more common in elderly people.
- b. Leukopenia: low WBC due to glucocorticoids and/or anticancer agents.
- c. Infectious mononucleosis: a virus that involves an excessive number of abnormal agranulocytes.

#### 5. Platelets.

- not cells in the strict sense, cytoplasmic fragments of extremely large cells called megakaryocytes.
- contains many substances that aid in clotting processes such as calcium ions, serotonin, a variety of enzymes, ADP, PDGF, and other growth factors; many receptors to growth factors, insulin, signaling molecules (kinases, phosphatases), glycogen, and are capable of metabolism.
- are essential for clotting when blood vessels are ruptured or the lining is injured.
- platelet formation is stimulated by a hormone (thrombopoietin), which stimulates the production of megakaryocytes.
- platelet formation: hemocytoblast --> megakaryoblast --> repeated mitosis, not cytokinesis --> promegakaryocyte --> megakaryocyte --> cell fragmentation --> platelets.

#### A. Hemostasis:

- prevents blood loss through walls of damages vessels, establishes a framework for tissue repair.

- 1. Vascular spasms: damage to the blood vessel walls causes contraction of SMC fibers in the walls, constriction.
- endothelial changes during vascular phase: damaged endothelium releases ADP and hormones such as endothelin which stimulate the SMC cell to contract and also endothelial, SMC, and fibroblast proliferation; endothelial cells contract exposing underlying basal membrane; surface of endothelial cells becomes sticky
- 2. Platelet plug formation:
- platelets begin to attach to sticky endothelial cell membrane, and exposed collagen fibers, platelet adhesion.
- as platelets adhere they become activated, more platelets attach, platelet aggregation.
- how does platelet activation lead to platelet aggregation?
- activated platelets begin synthesizing and releasing many substances, such as the following:
  - ADP
  - thromboxane A<sub>2</sub>
  - serotonin
  - platelet factors
  - growth factors
- platelet plug limited to immediate area where it is needed by secretion of prostacyclin (inhibitor to platelet aggregation) in adjacent, undamaged endothelial cells.
- 3. Coagulation: blood clotting.
- complex series of steps involving many factors that lead to the conversion of circulating fibrinogen into insoluble protein fibrin, covers the surface of platelet plug and forms a blood clot; it is a three phase pathway.

PHASE 1: (2 pathways)

- intrinsic pathway: no tissue involvement; begins with activation of proenzymes exposed to collagen fibers at injury site; PF3+ calcium+ enzymes --> platelet thromboplastin.
- extrinsic pathway: involvement of tissue; tissue factor(TF) + calcium+enzymes --> tissue thromboplastin.

PHASE 2: common; prothrombin --> thrombin catalyzed by prothrombin activator.

# PHASE 3: fibrinogen --> fibrin

XIII --> activated XIII -- binds fibrin strands together.

# B. Clot retraction & repair

- within 30-60 minutes, a clot is stabilized further by the platelet induced process of clot retraction.
- effects of clot retraction: pulls the edges of the vessel together, lowers the residual bleeding, and stabilizes the injury site; also reduces the size of the damaged area.

### C. Fibrinolysis.

- a process that removes unneeded clots when permanent healing has occurred
- clot "buster" is a fibrin-digesting enzyme, plasmin; produced by activation of a proenzyme plasminogen that was incorporated in large amounts into a forming clot, remains inactive until the appropriate signals reach it.
- the presence of clots in/around blood vessels are detected by ECs that release tissue plasminogen activator (t-PA); thrombin can also act on activation of plasminogen
- plasmin digests fibrin strands
- fibrinolysis begins within two days and continues over several days until the clot is completely dissolved.
- D. Factors limiting clot growth and function.
- blood flow.
- -. prostacyclin produced by adjacent ECs.
- thrombomodulin released by EC, binds thrombin and converts it to an enzyme that activates protein C, and inactivates several clotting factors.
- heparin.
- alpha2 macroglobulin.