General sensory physiology

- I. Introduction
- A. Sensory receptors
- B. General processing patterns
 - Networks
 - o primary sensory neuron
 - o secondary, tertiary, etc., sensory neurons

0

- II. SR classification
- A. Location
 - 1. exteroceptors
 - 2. interoceptors
 - 3. proprioceptors

4.

- B. Type of stimulus detected
 - 1. mechanoreceptors
 - 2. thermoreceptors
 - 3. photoreceptors
 - 4. chemoreceptors
 - 5. nociceptors

6.

- C. Structural complexity
 - 1. simple receptors modified dendritic endings of sensory neurons
 - a. free (naked) dendritic endings -- cutaneous senses
 - b. encapsulated endings -- nerve endings associated with connective tissue coverings
 - cutaneous senses

- proprioception

- 2. complex receptors
 - sensory cells
- III. Electrical and chemical events occurring in receptors
- A. Receptor potentials (RP)
 - 1. mechanism
 - stimulus produces a change in membrane potential directly proportional to its intensity; if receptor threshold reached SAP produced.
 - 2. receptor potentials -- in simple receptors
 - 3. receptor potentials -- in complex receptors
 - 4. ionic basis of generator potential
 - 5. adaptation
 - a. tonic receptors -- slow adapting
 - b. phasic receptors -- fast adapting
 - c. basis of adaptation phenomena
 - opening of channels that cause repolarization -decay GP rapidly
 - accessory structures decrease amount of stimulus reaching receptor
- IV. Coding of sensory information
- A. Modality and location
 - 1. Sensation invoked by impulses generated in a receptor depends of specific part of brain they ultimately activate.
 - specific sensory pathways are discrete from sense organ to cortex: labeled line coding.
 - a. modality: brain associates signals from specific receptors with a specific modality.

b. location

- no matter where a particular sensory pathway is stimulated along its course to cortex, conscious sensation produced is referred to the location of the receptor.
- phantom limb example in amputees
- lateral inhibition helps isolate the location of stimulus; involves presynaptic inhibition.

B. Intensity and duration

1. Intensity

- a. coded by frequency of APs generated porportional to intensity of stimulation.
- b. coded by number of sensory units firing
- a sensory unit is a sensory axon and all its peripheral branches
- receptors of a primary neuron pick up information from a specific area -- receptive field; thus each sensory unit has a receptive field
- primary and secondary sensory neurons do not always exist 1:1
- often multiple primary sensory neurons converge onto a single secondary sensory neuron -- individual receptive fields merge onto a single, large receptive field.
- intensity of stimulus also determined by number of sensory units being stimulated
- recruitment of sensory units by increasing stimulus intensities can result in perception of a stronger stimulus.
- c. examples of two point discrimination.