Respiratory system

I. Introduction

- A. Respiration -- the sum of processes that accomplish passive movement of O_2 from atmosphere to tissues to support metabolism, as well as passive movement of CO_2 from tissues to the atmosphere
- internal respiration: occurs in mitochondria; use of cellular fuels (glucose, fatty acids) to produce ATP; O₂ is final electron acceptor and CO₂ produced as a metabolic waste product.
- external respiration: oxygen from the environment taken up and delivered to individual cells; carbon dioxide produced during cell metabolism excreted into environment
- B. External and internal respiration
- 1. External respiration
 - ventilation
 - exchange of gases between air in alveoli and blood
 - transport of gases
 - exchange of gases between the blood and the tissues
- 2. Internal respiration.
- C. Functional anatomy.
- nasal cavity, pharynx, larynx, trachea, bronchi, bronchioles, terminal bronchioles, respiratory bronchioles, alveolar ducts, alveolar sacs, alveoli.
- 1. two functional zones:
- conducting zone: includes passageways which serve as conduits for air to reach site of gas exchange; cleanse, humidify, warm incoming air.
- respiratory zone: actual site of gas exchange.
- 2. respiratory tract
- a. nasal cavity --> larynx.
- b. Trachea: from larynx to mediastinum.
- c. Bronchi and their subdivisions: the bronchial tree.

- the trachea gives rise to the right and left primary bronchi which enter the lungs.
- once in the lungs the bronchi continue to divide (there are 23 orders); air passages under 1 mm diameter called bronchioles.
- as conducting tubes become smaller, structural changes occur:
 - cartilage supports change: go from cartilage rings to plates; eventually disappear; no cartilage at bronchioles, elastic fibers in tube wall remain.
 - type of epithelium changes: pseudostratified columnar to simple columnar to cuboidal.
 - amount of smooth muscle increases.
- the terminal bronchioles mark the end of conducting zone.
- the respiratory zone begins at respiratory bronchioles: have occasional alveoli lining their walls; lead to alveolar ducts.
- alveolar ducts: walls almost entirely lined by alveoli; lead to clusters interconnected alveoli, alveolar sacs.
- d. Alveoli (location of respiratory membrane).
 - extensive network of capillaries are associated with each alveolus; capillaries are surrounded by a network of elastin fibers.
 - alveolar epithelium: simple squamous (type 1 cells); also macrophages and surfactant cells (type II cells).
 - alveolar epithelium and capillary endothelial cells share a common BM.
- e. Lungs and pleura
- pleura a double layered serosa; parietal pleura, visceral pleura, pleural cavity that has pleural fluid.
- II. Pulmonary ventilation.
- breathing/pulmonary ventilation: movement of air in and out of respiratory tract.
- A. Basic properties of gases
- gases are compressible/expandable.
- the pressure exerted by a gas is inversely proportional to the volume it occupies.
- B. Respiratory pressures (always expressed relative to atmospheric pressure, 760 mm Hg).

- 1. Intrapulmonary pressure: pressure within the alveoli, always driven to equalize itself to atmospheric pressure.
- 2. Intrapleural pressure; pressure within the pleural cavity.
- the parietal and visceral pleurae are separated by a thin film of pleural fluid; they are held together by surface tension of pleural fluid -- polar molecules in intrapleural fluid resist being pulled apart because of their attraction to each other; since parietal pleura is attached to the thoracic cavity and visceral pleura to lungs, this interaction holds lungs to thoracic wall.
- however elasticity of chest wall expands thorax outward; elasticity of alveoli pulls lungs inward; alveolar surface tension pulls alveoli inward
 - as a result of the two sets of opposing forces "tugging" at the pleurae, a negative pressure is established in the intrapleural space (average -4 mm Hg, changes through insp/exp cycles).
- C. Forces holding lungs and thoracic wall in close apposition
 - surface tension of pleural fluid
 - transmural pressure gradient
 - o example of pneumothorax

D. Breathing movements.

- 1. Muscles/pressure changes: actions of respiratory muscles causes volume changes in the pulmonary cavity that causes pressure changes -- drive air movements in/out of lungs; air always flows from a region of high to low pressure in an attempt to create a pressure equalization.
- a. Inspiration: diaphragm contracts and external intercostal contract; decreases intrapulmonary pressure, equalizes as air moves in; decrease in intrapleural pressure.
- b. Expiration: diaphragm relaxes and external intercostal relax; increases intrapulmonary pressure, equalizes as air moves out.
- 2. Types of breathing.
- a. quiet breathing: inspiration only involves diaphragm and external intercostal contractions; expiration is passive (relaxation of above muscles).
- b. Forced breathing: both inspiration and expiration are forced; that is, additional accessory muscles are recruit into inspiration; contraction of a number of other muscles (internal intercostals, abdominal) also involved in bringing about expiration.

E. Resistance to breathing

- F = P/R
- 1. Primary determinant of resistance to airflow is radius of conducting airways
- occurs mostly in medium sized bronchi
- usually not an issue in healthy individual -- very small pressure gradients required to achieve adequate rates of airflow
- factors affecting bronchi diameter and therefore airway resistance:
 - ANS effects: sympathetic effects produce bronchodilation; parasympathetic innervation (relaxed situations) produces bronchoconstriction
 - local effects such as histamine release in allergic reaction (bronchoconstriction)
- 2. Chronic obstructive pulmonary disease (COPD)
- a. chronic bronchitis
 - long-term inflammatory condition -- triggered by irritant
 - local accumulation of mucus
 - pulmonary bacterial infections

b. asthma

- thickening or airway walls -- inflammation, histamine-induced edema
- plugging of airways -- excess mucus
- airway hyperresponsiveness -- SM spasms
- causes: allergens, irritants

c. emphysema

- increased trypsin secretion from macrophages
- destruction, collapse of small airways
- 3. Compliance: an indication of degree of expandability of lungs; any factor that decreases compliance (increase CT deposition in alveolar walls, decrease in surfactant levels) will enhance resistance to breathing
- the lower the compliance of the lungs, the larger the transmural pressure gradient that must be created during inspiration to produce normal lung expansion

- a greater than normal transmural pressure gradient during inspiration only achieved by making intrapleural pressure more subatmospheric than usual --> need greater expansion of thorax --> more vigorous contraction of respiratory muscle --> more work
- 4. alveolar surface tension
- in thin fluid film coating alveoli, water molecules have a greater attraction for each other than for the gas molecules they interface with
- this creates a form of tension (alveolar surface tension) that resists any increases in surface area and hence creates resistance to inspiratory movements that occur as part of breathing
- surfactant minimizes alveolar surface tension
- F. Lung volumes: refer to amounts of air flushed in/out of lungs (ml).
- 1. Respiratory volumes:
- a. Tidal volume (TV, 500 ml): the amount of air inhaled or exhaled with each breath under resting conditions.
- b. Inspiratory reserve volume (IRV, 3100 ml): amount of air that can be inhaled beyond a tidal volume inhalation
- c. Expiratory reserve volume (ERV, 1200 ml): amount of air that can be exhaled beyond a tidal volume exhalation.
- d. Residual volume (RV, 1200 ml): the amount of air that is left in the lungs after a forced exhalation; provides air to alveoli even between breaths.
- 2. Respiratory capacities: sum of volumes.
- a. Inspiratory capacity (IC= RV + IRV, 3600 ml): maximum volume of air a person is able to inspire after tidal volume expiration.
- b. Functional residual capacity (FRC = ERV + RV, 2400 ml): the volume of air left in the lungs after the normal tidal expiration.
- c. Vital capacity (VC = IRV + TV + ERV, 4800 ml): maximum volume of air that can be expired after a maximum inspiratory effort; measure of total amount of exchangeable air.
- d. Total lung capacity (TLC = IRV + TV + ERV + RV): volume of air contained in the lungs after a maximum inspiratory effort.

- 3. Dead space (VD): volume of conducting zone airways where air does not participate in gas exchange; about 150 ml
- F. Ventilation measurements: measurements of rates of gas movements in and out of respiratory tract.
- 1. Minute ventilation (Vm): total amount of air moved in and out of respiratory tract in one minute.
- Vm = respiratory rate (f) x TV.
- 2. Alveolar ventilation (VA): amount of air reaching alveoli in one minute; an adjustment of Vm for anatomical dead space; can change independently of minute volume; VA = f X (VT VD)
- changes in TV will affect alveolar ventilation more drastically than respiratory rate changes, since anatomical dead space is always a constant for a particular individual.
- III. Gas exchange and transport.
- A. Properties of gases.
- 1. Dalton's law of partial pressures: the total pressure exerted by a mixture of gases is the sum of the pressures exerted by each individual gas in the mixture; the pressure exerted by each gas (partial pressure) is directly proportional to its percentage in the total gas mixture.
- note the differences in composition of atmospheric air and alveolar air:
- a. atmospheric air: P_{N2} =597 mm Hg; P_{O2} =159 mm Hg; P_{CO2} = 0.3 mm Hg; P_{H20} =3.7 mm Hg.
- b. alveolar air: $P_{N2}=569 \text{ mm Hg}$; $P_{O2}=104 \text{ mm Hg}$; $P_{CO2}=40 \text{ mm Hg}$; $P_{H20}=47 \text{ mm Hg}$.
- 2. Henry's law: when a mixture of gases is in contact with a liquid, each gas will dissolve in the liquid in proportion to its partial pressure. The exact volume of a gas that will dissolve in a liquid at any given partial pressure depends on the solubility of the gas in liquid.

B. Gas exchange.

1. External respiration: gas exchanges occurring between blood and alveolar air, governed by partial pressure gradients and gas solubilities.

	ALVEOLI	direction of diffusion	ENTERING BLOOD	LEAVING BLOOD
P _{O2}	104 mm Hg	>	40 mm Hg	104 mm Hg
P _{CO2}	40 mm Hg	<	45 mm Hg	40 mmHg

- other factors that influencing the movement of gases across respiratory membrane are the thickness of the respiratory membrane and surface area available for gas exchanges.
- note that partial pressure gradients for oxygen diffusion are much greater than those for carbon dioxide, however approximately equal amounts of these gases are exchanged due to solubility differences.
- summary: partial pressure gradients for the oxygen, carbon dioxide are key to gas exchanges; oxygen flows downhill from air --> alveoli --> tissue; carbon dioxide flows downhill from tissue --> air.
- 2. Internal Respiration: gas exchanges between blood and tissues.

	BLOOD ENTERING TISSUES	direction of diffusion	TISSUES	BLOOD LEAVING TISSUES
P _{O2}	104 mm Hg	>	< 40 mm Hg	40 mm Hg
P _{CO2}	40 mm Hg	<	> 45 mm Hg	45 mmHg

- note that partial pressure gradients for oxygen diffusion are much greater than those for carbon dioxide, however approximately equal amounts of these gases are exchanged due to solubility differences.
- summary: partial pressure gradients for the oxygen, carbon dioxide are key to gas exchanges; oxygen flows downhill from air --> alveoli --> tissue; carbon dioxide flows downhill from tissue --> air.
- however, the amount of both these gases transported to and from tissue would be grossly inadequate if 98.5% of dissolved oxygen didn't combine with hemoglobin (Hb) and 94.5% of dissolved carbon dioxide didn't enter a complex series of reactions in preparation for transport.

- without hemoglobin/carbon dioxide reactions the same $P_{\rm O2}$ and $P_{\rm CO2}$ would be achieved in blood, but blood would have a much lower oxygen/carbon dioxide carrying capacity.
- C. Gas transport in the blood.
- 1. Oxygen transport.
- O₂ carried in two ways, dissolved in plasma (1.5%) and bound to Hb (98.5%).
- a. Association/dissociation of oxygen and hemoglobin.
- (i) one hemoglobin molecule binds four molecules of O_2 (review structure).
- (ii) reduced or deoxygenated Hb HHb; oxyhemoglobin (HbO₂).
- (iii) loading/unloading of O₂:

$$HHb + O2 < ---> HbO_2 + H+$$

- there is cooperation of four polypeptides of Hb molecule in binding and unbinding O_2 ; that is affinity of Hb for O_2 changes with the state of saturation of Hb: the greater the saturation of Hb, the greater the affinity for Hb.
- b. Factors influencing the rate at which hemoglobin binds/releases oxygen.
- (i) The influence of P_{O2} on Hb saturation: the oxygen/hemoglobin dissociation curve.
- resting conditions P_{O2} 104 mm Hg: the arterial blood is 98% saturated; 100 ml of systemic blood contains 20 ml O_2 (O_2 content is 20 vol%).
- as arterial blood flows through systemic caps: $P_{\rm O2}$ about 40 mm Hg, 5 ml $O_2/100$ ml blood released, yielding a 75% Hb saturation and O_2 content of 15 vol% in venous blood.
- (ii) Important features of oxygen/hemoglobin dissociation curve.
- Hb almost completely saturated at $P_{\rm O2}$ 70 mm Hg, further increases of $P_{\rm O2}$ cause only very small change in oxygen binding; therefore adequate oxygen loading and delivery are possible in conditions where partial pressure of oxygen of inspired air is well below the usual level.
- majority of oxygen unloading occurs in steep portions of the curve, where $P_{\rm O2}$ changes very little; since only 20-25% of bound oxygen unloads during one systemic circuit, there are still large amounts of oxygen available in venous blood (venous reserve); therefore if $P_{\rm O2}$ drops in tissues (as during exercise) more oxygen can dissociate from hemoglobin and be delivered to the tissues.

- (iii) Influences of P_{CO2}, pH, BPG on Hb saturation.
- a number of factors listed above influence Hb saturation by modifying Hb 3D structure and thus its ability to bind O_2 .
- increased temperature, P_{CO2} , BPG, and decreased pH will shift the dissociation curve to the right; this means that at a given P_{O2} , the percent of hemoglobin saturation with O_2 decreases dramatically, more oxygen is delivered; a shift of the curve to the left (less O_2 delivered at a given P_{CO2}) occurs if P_{CO2} and temperature decrease and pH increases.
- 2. Carbon dioxide transport.
- occurs in three ways: dissolved in plasma, chemically bound to RBC Hb, as bicarbonate in plasma.
- a. Dissolved in plasma: 7-10% of transported CO₂.
- however, most CO2 molecules that dissolve in plasma enter the RBC and participate in a number of chemical reactions that prepare CO2 for transport.
- b. Chemically bound to hemoglobin in RBC.
- CO₂ + Hb ----> HbCO₂ quick, uncatalyzed reaction.
- reaction is influenced by PCO2 and the degree of hemoglobin oxygenation; increased PCO2, increased binding; decreased PCO2, decreased binding; HHb binds CO2 better than Hb.
- c. Transported by bicarbonate in plasma.
- dissolved CO₂ enters RBC:

$$-CO_2 + H_2O < ---CA ---> H_2CO_3 < ----> HCO_3^- + H^+ (CA: carbonic anhydrase)$$

- (i) Tissues:
- hydrogen ions released cause a shift in the oxygen-hemoglobin dissociation curve to the right (Bohr effect).
- Hb binds up H⁺, Hb + H⁺ ----> HHb (buffering of H⁺); HHb in turn has increased CO2 binding capacity.
- HCO₃ enters plasma, transported in this way (ionic balance maintained by CI shift).

- (ii) Lungs:
- HCO₃ renters RBC; CI shift.
- HCO₃⁻ combines with H⁺ made available by HHb + O₂ ---->HbO₂ + H⁺; H₂CO₃ produced, which dissociates into CO₂ and H₂O, catalyzed by CA; CO₂ removed from lungs by ventilation.
- (iii) Amount of CO₂ transported in the blood is directly affected by oxygenation of the blood (Haldane effect):
- in tissues as CO₂ moves into systemic blood and participates in CA reaction, due to Bohr effect (generation of H⁺) more O₂ dissociates from Hg, i.e., oxygenation of blood decreases; deoxyhemoglobin can bind CO₂ more efficiently, so decreased Hb oxygenation increases CO₂ transport; furthermore, once O₂ dissociates from Hb, the latter binds up H⁺ to form HHb (the CA reaction is pushed to the left), causing more CO₂ to be "converted to HCO₃-"
- (iv) Alkaline reserve.
- HCO₃ ions are produced due to CO₂ transported in the plasma and act as an alkaline reserve.
- $-CO_2 + H_2O < ---CA ---> H_2CO_3 < ----> HCO_3^- + H^+ (CA: carbonic anhydrase)$
- thus changes in H+ ion concentration can have dramatic effects on CO₂ levels and ventilation rates; conversely, changes in respiratory rate can also have very dramatic effects in blood pH; in slow, shallow breathing CO₂ accumulates and causes decreased pH; in deep, rapid breathing, CO₂ drops and pH increase; therefore, the respiratory system provides a quick way to adjust blood pH.
- IV. Regulation of respiration.
- involuntary control brought about by activity of neurons located in a number of centers in the medulla and pons, collectively called the respiratory centers; include the dorsal regulatory group, ventral regulatory group, apneustic center, pneumotaxic center.
- A. Respiratory centers: respiratory cycle controlled by spontaneous, rhythmic discharge of neurons comprising the respiratory centers.
- 1. Medullary centers: these centers set the pace of respiration.
- a. Dorsal regulatory group (DRG).
- contains neurons that control lower motor neurons innervating diaphragm and external intercostals; involved in every respiratory cycle.

- b. Ventral regulatory group (VRG).
- contains a mix of neurons involved in forced expiration and maximal, forced inhalation.

Quiet breathing:

- activity of DRG increases for two seconds, stimulating inspiration muscles, inspiration occurs; after two seconds DRG stops firing, the inspiratory muscles relax and passive expiration occurs.

Forced breathing:

- activity of the DRG increases, somehow (??) the level of activity of inspiratory neurons in VRG increases; this results in stimulation of neurons that activate accessory muscles of inspiration; DRG stops firing, inspiratory neurons of VRG also is no longer active; expiratory neurons of VRG begin to fire; therefore, inspiratory muscles relax and muscles of forced expiration contract.
- 2. Pontine centers: adjust output of rhythmic medullary centers.
- a. Appreciate center (AC): supplies continuous stimulation to DRG; during quiet breathing it helps increase intensity of inspiration every two seconds; after two seconds it is inhibited by pneumotaxic center.
- b. Pneumotaxic center (PC): inhibits AC and helps to promote passive or active exhalation.
- B. Factors influencing respiratory center activity.
- 1. Chemical controls of respiration
- aim is to hold arterial/alveolar P_{CO2} constant, combat excess H^+ , and raise the P_{O2} when it begins to fall to potentially dangerous levels.
- P_{CO2} is the most important variable governing ventilation; two centers involved in monitoring $P_{CO2}2$ of arterial blood: central chemoreceptors in the dorsal walls of the fourth ventricle (medulla) that monitor H^+ concentration of CSF; and peripheral chemoreceptors, cells in the walls of the aortic and carotid bodies, stimulated by rise in P_{CO2} , [H+] and drop of P_{O2} or arterial blood

- a. Central chemoreceptors.
- are located in the medullary area, in direct contact with CSF; monitor hydrogen ions concentration CSF.
- CO_2 passes through BBB into ventricle: $CO_2 + H_2O < ---CA ---> H_2CO_3 < -----> HCO_3^- + H^+$
- increased H⁺ concentration stimulates chemoreceptors that act on respiratory centers to increase rate and depth of respiration; when alveolar ventilation increases, carbon dioxide is flushed out.
- b. Peripheral chemoreceptors.
- response of peripheral chemoreceptors to hypoxia
- denervation of peripheral chemoreceptors:
- response to $P_{\rm O2}$ drop (while holding arterial $P_{\rm CO2}$ at normal levels) is eliminated; response to increased arterial [H+] abolished (while holding arterial $P_{\rm CO2}$ normal); response to increase in arterial $P_{\rm CO2}$ reduced by 30%.
- thus mediate about 30% of response to increased $P_{\rm CO2}$; also monitor $P_{\rm O2}$; under normal conditions $P_{\rm O2}$ effects on $V_{\rm A}$ are limited to enhancing sensitivity of central receptors to increased $P_{\rm CO2}$.
- P_{O2} must drop substantially (below 60 mm Hg) for stimulation of peripheral chemoreceptors -- up to a P_{O2} of 60 mm Hg, Hb is still substantially saturated with O_2 and adequate amounts of O_2 can be delivered to tissues (such as brain); furthermore, drops in P_{O2} from 100 60 are usually associated with increased P_{CO2} levels; thus even though the drop in P_{O2} in this range does not stimulate increased firing of peripheral chemoreceptors, ventilation is usually increased due to response of central and peripheral chemoreceptors to increasing P_{CO2} levels
- as the P_{O2} falls below 60 mm Hg, however, Hb saturation levels drop substantially to the point that delivery of adequate amounts of O_2 to the tissues is jeopardized -- thus the ability of the central chemoreceptors to drive ventilation is questionable as they may not be fully functional (due to lack of O_2); thus the response of the peripheral chemoreceptors to drop in P_{O2} in this range becomes the critical driving force for required ventilation increase.

2. Baroreceptor reflexes.

- increases in BP will cause a decrease in respiratory rate; decreases in BP cause an increase in respiratory rate; mediated by direct connections between vasomotor and respiratory center (effect minimal compared to chemoreceptor effects).

- 3. Herring-Breuer reflexes: from afferent in walls of lungs, stretch receptors.
- a. Inflation reflex: increased stretch due to overinflation of lungs causes activation of HB1 stretch receptors; afferents inhibit DRG neurons and stimulate expiratory neurons of VRG.
- b. Deflation reflex: severe lung deflation causes activation of HB2 receptors in the lung walls (pleura) that send impulses to RC; this inhibits expiratory neurons of VRG, and stimulates DRG reurons.