The endocrine system -- a brief overview.

I. Introduction

- the endocrine system is an integration system that influences the metabolic activities of cells.
- acts via hormones, chemical messengers produced by endocrine glands -- pineal, hypothalamus, pituitary, thyroid, parathyroid, adrenals, pancreas, gonads.
- endocrine system (ES) vs. nervous system (NS):
 - ES slow acting, long-term effects, metabolic regulation, water and electrolyte balance, nutrient balance, regulation of cell metabolism, energy balance.

II. Hormones

- chemical substances secreted by cells into ECFs that regulate metabolic function of other cells.

A. Chemistry

- 1. amino aid based hormones: amino acid derivatives, single modified amino acids, peptides, proteins, glycoproteins.
- 2. steroid based hormones cholesterol derivatives.
- 3. eicosanoids -- derivatives of 20-carbon polyunsaturated fatty acid, arachidonic acid
 - arachidonic acid is fatty acid found in membrane of all cells
 - include prostaglandins, prostacyclins, thromboxanes, leukotrienes
 - extremely active biologically
 - o smooth muscle contraction (prostaglandins), relaxation (prostacyclins)
 - o clot formation:
 - stimulate platelet aggregation (thromboxane)
 - inhibit platelet aggregation (prostacyclin)
 - o mediator of allergic and inflammatory response:
 - leukotrienes:
 - bronchoconstriction
 - arteriolar vasodilation

- increased vascular permeability
- chemotaxic: attract WBC

B. Mechanisms of hormone action

- hormones produce effects on target cells by:
 - changes in membrane permeability due to opening/closing of channels.
 - activation/deactivation of regulatory molecules -- covalent modification.
 - synthesis of regulatory molecules -- involves changes in gene expression.
- these effects result in physiological changes:
 - induction of secretory activity.
 - stimulation of mitosis.
 - contraction/relaxation
- 1. Action of peptide/protein hormones
 - hormones non-lipid soluble
 - bind a membrane receptor molecule
 - activation of G-protein
 - o opens channel
 - activates enzyme
 - second messenager produced (cAMP, Ca⁺⁺)
 - second messenger initiates an intracellular cascade of events that bring about changes in cell function

2. Action of steroid hormones

- hormones are lipid soluble, pass through the cell membrane.
- bind a cytosolic/nuclear receptor -- forms HR complex.
- HR complex binds a chromatin site, changes shape of chromatin, exposes binding sites for transcription factors -- transcription of a specific gene stimulated, new proteins synthesized.

- C. Hormone target cell specificity: hormones produce effects in target cells that have receptors for hormone
- target cell activation depends on:
 - level of hormone present
 - number of receptors for hormone
 - o upregulation/downregulation of receptors
 - affinity of receptor for hormone

D. Duration of hormone activity

- depends on:
 - rate of release vs. rate of degradation/excretion (measured by half life)
 - o peptides have short half life, steroids have longer half life.
 - degree of plama protein binding -- in case of lipid hormones

•

- effects can last seconds to hours/days depending on hormone and mechanism of action.
- E. Control of hormone release
- regulation in majority of cases via negative feedback.
- cells stimulated to release hormones by three types of stimuli:
 - humoral stimuli
 - neural stimuli
 - hormonal stimuli.

III. Major endocrine organs

- A. The pituitary gland
- 1. Functional anatomy of pituitary-hypothalamic interactions.
 - a. pituitary (anterior/posterior) closely associated with hypothalamus via a stalk, infundibulum.
 - b. two two interconnected capillary beds, one in infundibulum a second bed associated with anterior/posterior pituitary.

- c. anterior pituitary -- glandular epithelium; manufactures, releases a number of hormones; AP hormones released in response to presence of releasing hormones produced by neurons in the hypothalamus and released into the capillary bed of the infundibulum.
- d. posterior pituitary -- neural tissue, neuron endings; stores and releases neurohormones that are synthesized in the cell bodies of its neurons in the hypothalamus; when neurons are activated, hormones released at posterior pituitary.
- 2. Adenohypophyseal hormones (AP)
- secretion under influence of hypothalamic releasing hormones.
- four of adenohypophyseal hormones are tropic hormones -- regulate secretory activity of other endocrine glands (ACTH, FSH, LH, TSH).
- other two hormones exert their influence on non-endocrine targets GH, prolactin.
 - a. growth hormone (GH)
 - -protein.
 - stimulates virtually all cells of body to increase in size and divide, but main targets are bones (stimulation of epiphyseal plate growth) and skeletal muscle (stimulate increase in muscle mass).
 - stimulates increased amino acid uptake from blood; mobilizes fats; spares glucose.
 - b. thyroid-stimulating hormone (TSH)
 - glycoprotein.
 - stimulates normal development and secretory activity of the thyroid.
 - c. adrenocorticotropic hormone (ACTH)
 - peptide.
 - stimulates the adrenal cortex to release glucocorticoids and androgens (corticosteroids).
 - d. gonadotropins (FSH, LH)
 - glycoproteins.
 - FSH stimulates gamete production, LH stimulates productions of gonadal hormones.
 - e. prolactin
 - protein.

- stimulates milk production by breast secretory tissue.
- 3. Neurohypophyseal hormones (PP)
 - a. antidiuretic hormone (ADH)
 - peptide
 - firing of hypothalamic neurons that store ADH at their terminal endings stimulated by increased osmolarity of blood.
 - regulation of water balance, plasma volume.
 - b. oxytocin
 - peptide
 - stimulated by impulses from hypothalamic neurons in response to cervical/uterine stretching and suckling of infant at breast.
 - childbirth,; suckling reflex.

B. Thyroid gland

- largest endocrine gland, inferior to larynx.
- 1. internal anatomy
- thyroid composed of follicles
- follicular cells secrete large glycoprotein, thyroglobulin to follicular space, and pump iodide into follicular space; thus follicular space contains thick proteinaceous material, colloid, the major component of which is thyroglobulin.
- thyroglobulin contains many tyrosines -- iodination and coupling of tyrosine residues involved in formation of thyroid hormones.
- 2. synthesis of thyroid hormones
 - a. synthesis/secretion of thyroglobulin to follicle
 - b. iodide trapping, oxidation to iodine -- to lumen of follicle.
 - c. iodination of tyrosines of thyroglobulin (MIT, DIT)
 - d. coupling of iodinated tyrosines (T3/T4)
 - e. colloid endocytosis -- iodinated thyroglobulin taken into cell.
 - d. cleavage of thyroglobulin by lysosomal enzymes -- T3 and T4 released (modified amino acids).

- 3. TSH stimulates all above steps; an enzyme critical for iodide trapping, iodination, and coupling is thyroid peroxidase.
- 4. T3 and T4 are transported bound to plasma proteins, only a small amount of hormone is free in plasma; this protects hormones from degradation and provides body with a pool of ready to use thyroid hormone.
- 5. Target tissues convert T4 to T3 -- hormone finally acting on tissues is T3.
- 6. T3 acts via nuclear receptor model of steroid hormones.
- 7. Effects of thyroid hormone
 - a. promotes normal oxygen consumption and BMR -- by stimulating enzymes concerned with glucose oxidation.
 - b. due to effects above it increases body heat production calorigenic effect
 - modulates normal tissue growth and development.
- C. Parathyroid glands and parafollicular cells of thyroid
- parathyroid glands synthesize and release parathyroid hormone; parafollicular cells of thyroid synthesize and release calcitonin.
- calcium metabolism.
- D. Adrenal glands
- 1. Adrenal cortex -- outer layer of adrenal gland, produces corticosteroids
 - a. zona glomerulosa (outer cortex)
 - mineralocorticoids -- aldosterone; role in electrolyte balance.
 - b. zona fasciculata (middle cortex)
 - glucocorticoids -- cortisone, cortisol, hydrocortisone; essential effects on carbohydrate metabolism, maintenance of blood volume, stress response, depress immune system.
 - c. zona reticularis (inner cortex)
 - androgens -- androstenedione, estrogens; onset of puberty, appearance of axillary and pubic hair.
- 2. Adrenal medulla -- a sympathetic "ganglion"; epinephrine, norepinephrine.

- E. Pancreas insulin and glucagons
- F. Gonads -- sex hormones, estrogen, progesterone, testosterone.