3.4 AREA AND HYPERBOLIC DESIGNS

Areas in hyperbolic geometry do not have easily remembered formulas, such as A =

2 2
triangle is proportiona

Lbh for a Euclidean triangle. In place of that, Theorem 3.4.5 asserts that the area of a

1 to the defect of the triangle, or the amount by which its angle
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sum is less than 180°. Without formulas for areas, we need to make explicit what we
mean by area. Whether in Euclidean, hyperbolic or another geometry, area satisfies four
axioms.

i) Areais a nonnegative real number.
ii) Congruent sets have the same area.
iii) The area of a disjoint union of sets is the sum of their areas.

iv) The area of any point or line segment is zero.

Show that a triangle and the associated Saccheri quadrilateral from Theorem 3.3.3 have
the same area.

Solution. From case 1 of Theorem 3.3.3, AAFD = ABGD and AAEF ZACEH,
and quadrilateral BDEC is congruent to itself (Fig. 3.19). By axiom (ii), the pieces of
AABC have the same areas as the corresponding pieces of the Saccheri quadrilateral.
But we cannot yet use axiom (iii), for these pieces are not disjoint. However, the
intersections of the pieces are just line segments and so have zero area by axiom (iv).
Thus the areas of the triangle and its associated Saccheri quadrilateral are equal. Cases
2 and 3 are left as exercises. @

Theorem 3.4.1 generalizes Example | and justifies the definition of equivalent
polygons. The notion of equivalent polygons applies in many geometries. For example,
W. Bolyai and P. Gerwien showed that if two Euclidean polygons have the same area,
they are equivalent. Theorem 3.4.2 enables us to show that two triangles have the same
area by comparing their Saccheri quadrilaterals.

If a set S is the union of a finite number of sets Ay, A,, . . ., A, and the intersection of
any two sets A; and A is a finite number of line segments, then the area of S is the sum
of the areas of Ay, Ay, . .., A,.

Proof. Problem 1. m

Two polygons A and B are equivalent iff there are finitely many triangles A, Ao, . . .,
Apand By, By, . . ., B, such that A is the union of the A;; B is the union of the B;; for
each i, A; = B;; and the intersection of any A; and Aj (or B; and Bj) is at most a line
segment.

If polygons A and B are equivalent and polygons B and C are equivalent, then A is
equivalent to C.

Proof. Divide A and B into families of congruent triangles, A; and B;. Again, divide
B and C into families of congruent triangles, B and C, where B; and B’ can be
different (Fig. 3.25). We subdivide the triangles B; and B;. into smaller triangles B; jx so
that we can reassemble them into either A or C. The intersection Bj; of the convex sets
B; and B; is convex by Problem 8(e) of Section 1.3. Because Bi; is a convex polygon,
it can be subdivided into triangles B; ;. Then the union of all these small triangles B; ik
must give B and, by the assumptions of equivalence, can be rearranged to form both A
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and C. This result shows that A and C can be divided into triangles A;jk and C;j to
make A and C equivalent. m

Two Saccheri quadrilaterals with congruent summits and congruent summit angles are
congruent and so have congruent sides and bases.

Proof. Let ABCD and EFGH be two Saccheri quadrilaterals, with CD 2_6_17
/ADC = /EHG., and bases AB and EF. Showing that BC = FG and AB = EF is
sufficient to show that the quadrilaterals are congruent, as their corresponding angles
are already congruent. Suppose, for a contradiction, that their sides are not congruent.
WLOG, say, BC > FG (Fig. 3.26). Hence there is a point B’ on BC such that B'C =
FG. Similarly, there is an A’ on AD such that A’D = E H. From the midpoints P and
0 of the summits CD and GH draw the line segments AP, PB’, EQ, and OF.In
Problem 2 you are asked to complete the proof of this theorem. ®

Definition 3.4.2 The defect of a triangle is the difference between 180° and the angle sum of the triangle.
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Theorem 3.4.4 Triangles with the same defect have the same area.

Proof. Casel  Suppose that the two triangles AABC and AA’B'C’ have the same
defect and, further, that they have a pair of corresponding sides, BC = B'C’, congru-
ent. We construct the associated Saccheri quadrilaterals for each triangle, GHC B and
G'H'C’'B’ (Fig. 3.27). Recall that each triangle is equivalent to its Saccheri quadrilat-
eral (Example 1) and that the angle sums of the summit angles of these two Saccheri
quadrilaterals equal the angle sum of the corresponding triangles (the proof of Theo-
rem 3.3.3). These sums are equal, so the summit angles of the Saccheri quadrilaterals
must be congruent. By Theorem 3.4.3 the Saccheri quadrilaterals are congruent and so
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Figure 3.27
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Figure 3.28

are equivalent. Then Theorem 3.4.2 shows the two triangles are equivalent and so have
the same area.

Case 2 For the general case, we suppose only that AABC and AA’B’C’ have the
same defect. We construct a third triangle with one side congruent to one side of the
first triangle and another side congruent to one side of the other triangle and with the
same defect as the given triangles. Then we use case 1 twice to conclude that AABC
and AA’B’C’ are both equivalent to this third triangle. Hence we need only to construct
this triangle and prove that it satisfies the needed properties (Fig. 3.28). Let B'C’ be the
longest of the sizf_S_i)des of the two triangles and let X’ be the midpoint of B’C’. There is a
point X on line G H, which includes the base of the Saccheri quadrilateral G H, such that
X C = X'C’. (We can find such an X because EC is shorter than X'C". ) Construct P on
XC with X the midpoint of P and C. Then AP B C is the candidate for the third triangle.
Next, show that the intersection Z of P B with G H is the midpoint of P B so that AP BC
has GHCB for its Saccheri quadrilateral. Let Y be the point where the perpendlcular
from P meets GH. Then APYX = ACHX by AAS, implying that PY = CH, which
is congruent to BG. Thus APYZ = ABGZ, by AAS, and Z is indeed the midpoint of
PB. Finally, as AP BC has the same Saccheri quadrilateral as AABC, it has the same
defect. We can now use case 1 twice. =

There is a real number k& such that, for every triangle AABC, the area of AABC is
k - (Defect of AABC).

Proof. The defect and the area are functions of the triangle. First, Problem 9 of
Section 3.3 shows the defect function to be additive: For P between B and C, the
defects of AABP and AACP add to the defect of AABC. Area axiom (iii) shows
that the area function also is additive. Moreover, both functions are continuous. A result
from calculus states that a continuous function f that is additive [that is, it satisfies

fx+y)= f(x)+ f(y)] must be of the form f(x) = cx, for some constant c. Both

the defect function and the area function for triangles have this form, so one must be a
multiple of the other: The area of AABC is k - (Defectof AABC). m

A’
B’ c’

Theorem 3.4.6

Definition 3.4.3
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Figure 3.29

Figure 3.30

The area of a convex polygon is proportional to the defect of that polygon.
Proof. See Problem 5(b). m

The tie between the area of a polygon and its defect leads to curious possibilities. In
Euclidean geometry, all equilateral triangles must have 60° angles. In hyperbolic geom-
etry, however, the angles of an equilateral triangle, though congruent, must be less than
60°. Furthermore, as the sides of the triangle lengthen continuously, this angle measure
must decrease continuously, by Theorem 3.4.5 (Fig. 3.29). Thus some unique length
for this angle measures exactly 45°, so we can fit eight equilateral triangles around a
point. We can extend this pattern to cover the entire plane, as partially illustrated in Fig.
3.30 for the Poincaré model. We can create a corresponding pattern with seven or more
equilateral triangles around a point. Similarly, we can create patterns with five or more
“squares,” where a “square” is a figure with four congruent sides and four congruent
angles. With the help of the geometer H. S. M. Coxeter, the Dutch artist M. C. Escher
laboriously created several imaginative patterns, building on hyperbolic designs like that
shown in Fig. 3.30. More recently, Douglas Dunham [4] has used geometry and com-
puter graphics to create more varied patterns relatively quickly (Figs. 3.31 and 3.32).
From one copy of the repeating motif the computer constructs congruent copies to fill
out the plane. Of course, the computer needs to be programmed to “draw” in hyperbolic
geometry instead of Euclidean geometry. Inversions, which we discuss in Section 4.6,
provide one key to drawing congruent shapes for the Poincaré model. We also need to
compute distances between points in this model. Let A and B be any two hyperbolic
points. The hyperbolic line on these two points intersects the boundary of the Poincaré
model in the two omega points of that line, say, £2 and A. Poincaré found the hyperbolic
distance between A and B in terms of the Euclidean distances among the four points
A, B, 2, and A (Fig. 3.33). (The formula in Definition 3.4.3 involves the cross-ratio,
which we discuss in Chapter 6.)

In the Poincaré model, the hyperbolic distance between A and B is

AQ/BQ\ |
dy(A, B)=c - |log (————) s

AAN/BA
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Example 2

Figure 3.32

where XY is the Euclidean distance, ¢ is some constant, and €2 and A are the two omega
«—>
points of line AB.

Verify that neighboring points P; in Fig. 3.34 are equally spaced. The x-coordinates of
thepointsare Po=0, Py =3, =3, P3=], Py=B Ps=3 P, =P, Q=—1,
and A = 1.

Solution.  The Euclidean distances between these points are simply the differences of
their x-coordinates. Then (Py2/P1R2) + (PoA/P1A) = (1/(4/3)) = (1/(2/3)) = 1/2.
Similarly, (P1S2/P22) = (P1A/P2A) = ((4/3)/(8/5)) = ((2/3)/(2/5)) = 1/2. All of
the corresponding quotients equal 1/2 or 2. In turn, the absolute values of their log-
arithms are all the same. Hence, whatever the constant c¢ is, the distances will all be

equal. e

Figure 3.33

Figure 3.34

PROBLEMS FOR SECTION 34

1. Prove Theorem 3.4.1.
2. Complete the proof of Theorem 3.4.3 as follows.

a) Prove that AA'DP = AEHQ.
b) Prove that AA'PB' = AEQF.

¢) Prove that quadrilateral AA’B’B would have to
have four right angles, which is a contradiction.
This contradiction forces BC = FG and AD =
EH.

d) Prove that the bases, AB and EF, must be
congruent.

. Prove that there is some real number K such that the

area of every triangle is less than K. (The smallest
such K is the area of a “triangle” that has three
omega points for its vertices.)

. Use Fig. 3.35 and the theorems of this section to

prove that hyperbolic triangles having the same
height and congruent bases don’t necessarily
have the same area. What happens to the area of
AAB; By asi — 00?

B, B, By B, Bs

Figure 3.35

- Recall that the angle sum of a convex Euclidean

polygon with n sides is (n — 2)180°.

a) Prove by induction that the angle sum of a convex
hyperbolic polygon with n sides is less than
(n —2)180°.

b) The defect of a convex hyperbolic polygon with
n sides is the difference between (n — 2)180° and
its angle sum. Prove that the area of the polygon
is proportional to its defect.

- Generalize Problem 3 to show polygons with n sides

have a largest area. Find the relationship between the
least upper bound K, of the areas of polygons with
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n sides and K = K3, the least upper bound for the
areas of triangles.

. We can construct the inner circle of equilateral

triangles shown in Fig. 3.30 with the help of Fig.
3.36.

Figure 3.36

a) Construct the unit circle, the x-axis, the y-axis,
and y = +x.

b) The remaining side of each of the eight triangles
is an arc of a circle orthogonal to the unit circle.
Explain why these circles all have their centers on
the lines forming angles of 22%° + k - 45° with
the x-axis. Explain why these circles all have
their centers the same distance, x = OC, from
the origin and have the same, as yet unknown,
radius r.

¢) Explain why, in Fig. 3.36, OA and OB equal r.
d) Use the Poincaré model to explain why, in Fig.
3.36,x2=1+r2

e) The law of cosines gives a second equation in x
and r, namely, x> = r? + r2 — 2r2 cos 135°. Find
xandr.

f) Finish constructing the eight equilateral triangles
from part (a).

. a) Verify that C : (x — %)2 +yr= (%)2 is orthogo-

nal to the unit circle.

b) Find the intersections §2 and A of circle C
with the unit circle. Verify that P = (%, 0),
0= (%, @), and R = (%, —‘{—35_9-) are on C.
Assume ¢ =1 and find dgy (P, Q), dy(Q, R),
and dy (P, R). Why would we expect the sum
of the two smaller distances to equal the larger
distance? Verify that they do.

. Show the following properties for dy in the Poincaré

model.
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In certain ways, Euclidean geometry is intermediate between spherical and single
elliptic geometries on the one hand and hyperbolic geometry on the other hand. For
example, in Euclidean geometry, the angle sum of a triangle always adds to 180°. As we
know in hyperbolic geometry, the corresponding sum falls short of 180° in proportion

a) dy(A, B) =dy(B,A) > 0and dy(A, B) =0iff 10. a) Find the general pattern for the x-coordinates of
A=B. the points P; in Example 2.

b) If B is between A and C on the diameter AC, b) Use part (a) to show that dgy(P;, Piy1) =
thendy (A, B) +dy(B,C) =dy(A, C). dy(Py, Py).

Figure 3.37 In the single elliptic geometry
there is a path from P to Q that does not intersect k. and D.

3.5 SPHERICAL AND SINGLE ELLIPTIC GEOMETRIES

In one sense, mathematicians have studied the geometry of the sphere for millennia,
However, before Bernhard Riemann in 1854 no one had thought of spherical geometry
as a separate geometry, but only as properties of a Euclidean figure. The characteristic
axiom of spherical geometry is that every two lines (great circles) always intersect in
two points. (See Section 1.6.)

To retain the familiar notion of Euclidean and hyperbolic geometries that two points
determine a line, Felix Klein in 1874 saw the need to modify spherical geometry.
The usual way to do so was to identify opposite points on the sphere as the same
point and study this “collapsed” geometry, which Klein called single elliptic geometr);.
Thus the characteristic axiom of single elliptic geometry is that every two distinct lines
intersect in only one point. (Klein called spherical geometry double elliptic geomerry
because lines intersect in two points.) Spherical and single elliptic geometries share
many theorems in common, such as the angle sum of a triangle is greater than 180°.
In addition, single elliptic geometry possesses some unusual features worth noting. We
can represent single elliptic geometry as the half of a sphere facing us (Fig. 3.37) so
long as we remember that a line (or curve) that leaves the part facing us immediately
reappears directly opposite because opposite points are identified.

A line in either of these geometries has many of the same properties as a circle in
Euclidean geometry. First, we can’t determine which points are “between” two points
because there are two ways to go along a line from one point to another point. Note that
We can use two points to “separate” two other points (Fig. 3.38). Second, the total length
of a line is finite. A single elliptic line has another, more unusual property: It doesn’t
separate the whole geometry into two parts, unlike lines in Euclidean, hyperbolic, and
spherical geometries. Figure 3.37 indicates how to draw a path connecting any two
points not on a given line so that the path does not cross that line.

Exercise 1

to the area of the triangle. In spherical and single elliptic geometries, this sum is always
more than 180° and the excess is proportional to the area of a triangle. (Theorem 1.6.3
shows this condition for Euclidean spheres.) Indeed, in these geometries triangles can
have three obtuse angles, so the sum can approach 540°.

In our development of hyperbolic geometry we assumed that Euclid’s first 28
propositions hold, for they used only Euclid’s first four postulates, but not the fifth pos-
tulate. Many of these propositions, including two of the triangle congruence theorems
(SAS and SSS), continue to hold in spherical and single elliptic geometries. However,
most of the propositions after I-15, including AAS, do not hold in these geometries,
even though they do not depend on the fifth postulate.

Figure 3.39 illustrates Euclid’s approach to showing, as 1-16 states, that in any
triangle an exterior angle, such as /BC D, is larger than either of the other two interior
angles, /ABC and /BAC. From the midpoint E of BC, Euclid extended AE to F
so that EF = EA. Then by SAS AECF = AE BA. He then concluded that /BCD is
larger than / EC F, which is congruent to the interior angle /E B A. Figure 3.39 supports
this conclusion, but the similar situation shown in Fig. 3.40 for single elliptic geometry
rgv}eals that the conclusion depends on implicit assumptions. In Fig. 3.40, the part of
AE that looks like segment AE covers more than half the length of the line. Hence the
corresponding part of E F overlaps this apparent segment. Euclid implicitly assumed
that lines extend infinitely in each direction. Postulate 2 only says, “to produce a finite
straight line continuously in a straight line.” The overlapping “segments” AE and EF
in Fig. 3.40 satisfy the letter and, within reason, the spirit of postulate 2. Nevertheless,
I-16 is false here because /BC D can be smaller than ZECF.

Draw the figure in spherical geometry corresponding to the situation depicted in
Fig. 3.40.

2 For SAS to hold we need to assume that a side is the shortest part of a geodesic.

B F ’
A g D % d‘
A —g D
C

Figure 3.38 A and B separate C

Figure 3.39  Euclid’s diagram for proposition I-16.

Figure 3.40  The diagram from Fig. 3.39
in single elliptic geometry.
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a) dy(A, B) =dy(B,A) >0and dy(A, B) =0iff 10. a) Find the general pattern for the x-coordinates of

A=B. the points P; in Example 2.
b) If B is between A and C on the diameter AC, b) Use part (a) to show that dgy(P;, Piy)) =
then dy (A, B) +du(B, C) =du(A, C). du(Po, Py).

3.5 SPHERICAL AND SINGLE ELLIPTIC GEOMETRIES

In one sense, mathematicians have studied the geometry of the sphere for millennia.
However, before Bernhard Riemann in 1854 no one had thought of spherical geometry
as a separate geometry, but only as properties of a Euclidean figure. The characteristic
axiom of spherical geometry is that every two lines (great circles) always intersect in
two points. (See Section 1.6.)

To retain the familiar notion of Euclidean and hyperbolic geometries that two points
determine a line, Felix Klein in 1874 saw the need to modify spherical geometry.
The usual way to do so was to identify opposite points on the sphere as the same
point and study this “collapsed” geometry, which Klein called single elliptic geometry.
Thus the characteristic axiom of single elliptic geometry is that every two distinct lines
intersect in only one point. (Klein called spherical geometry double elliptic geometry
because lines intersect in two points.) Spherical and single elliptic geometries share
many theorems in common, such as the angle sum of a triangle is greater than 180°.
In addition, single elliptic geometry possesses some unusual features worth noting. We
can represent single elliptic geometry as the half of a sphere facing us (Fig. 3.37) so
long as we remember that a line (or curve) that leaves the part facing us immediately
reappears directly opposite because opposite points are identified.

A line in either of these geometries has many of the same properties as a circle in
Euclidean geometry. First, we can’t determine which points are “between” two points
because there are two ways to go along a line from one point to another point. Note that
we can use two points to “separate” two other points (Fig. 3.38). Second, the total length
of a line is finite. A single elliptic line has another, more unusual property: It doesn’t
separate the whole geometry into two parts, unlike lines in Euclidean, hyperbolic, and
spherical geometries. Figure 3.37 indicates how to draw a path connecting any two
points not on a given line so that the path does not cross that line.

Figure 3.37  In the single elliptic geometry Figure 3.38 A and B separate C
there is a path from P to Q that does not intersect k. and D.




