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4.2 ISOMETRIES
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Example 2
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Example 3

Exercise 2

Example 4

Definition 4.2.2

The most important family of transformations, isometries, do not change the distance
between points as the transformations move these points. Isometries are the dynamic
counterpart to the Euclidean notion of congruence.

A transformation o is an isometry on a set S with a distance function d iff for all points
P and Qin S,d(P, Q) =d(o(P),o(Q)). If d is the usual distance on the Euclidean
plane, then we call o a Euclidean plane isometry.

A rotation is an isometry (Fig. 4.4). It has one fixed point, in this case the origin. Most
rotations have no stable lines. Describe the stable lines of a rotation of 180° around a
point 0. e

As shown in Fig. 4.5, o doubles x-coordinates and halves y-coordinates. It is a transfor-
mation but not an isometry. @

Explain why an isometry takes a circle to a circle.

A mirror reflection over a line k is an isometry (Fig. 4.6). Points on the line k are fixed.
Any other point P is mapped to the point u(P), where k is the perpendicular bisector of
P (P). The stable lines are the line of fixed points and the lines perpendicular to that
line. e

In Example 3 explain why m is stable provided that m L k or m = k.

The isometry depicted in Fig. 4.7, called a translation, adds 3 to the x-coordinate and 2
to the y-coordinate of any point. A translation has no fixed points. The stable lines of a

translation are parallel to the direction of the translation. @

A Euclidean plane isometry t is a translation iff, for all points P and Q, the points P,
0, (Q), and 7 (P) form a parallelogram. (See Fig. 4.7.) The translation t is said to be

/o e

Figure 4.4
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Figure 4.6

Figure 4.7

in the direction of P7(P). A Euclidean plane isometry p is a rotation of r° iff there is a
point O such that p(0O) = O and, for all other P, m/P Op(P) = r°. (See Fig. 4.4.) A
Euclidean plane isometry u is a mirror reflection over the line k iff, for every point P,
k is the perpendicular bisector of the segment Pu(P). (See Fig. 4.6.)

Why is the identity both a translation and a rotation?

We now want to characterize all Euclidean plane isometries. Theorems 4.2.3, 4.2.5,
and 4.2.7 give important geometric descriptions of isometries. Their proofs depend on
the algebraic ideas of transformation groups, as well as on geometric properties. You
might benefit from first exploring these ideas visually in Projects 1-4.

The isometries of a set form a transformation group.

Proof. For closure, let @ and B be isometries on a set S and show that o o B is
an isometry. Let P and Q be any points in S. Then d(P, Q) =d(B(P), B(Q)) =
d(a(B(P)), a(B(Q))), showing & o B to be an isometry. Next, the identity, which fixes
every point, preserves distance and so is an isometry. Finally, for an isometry a we
show that its inverse a~! is also an isometry. For P and Q in S, let «~!(P) = U and
a~1(Q) = V. We must show that d(P, Q) =d(U, V). Because « is an isometry and
the inverse of a~!, d(U, V) = d(a(U), «(V)) = d(P, Q). Thus the isometries form a
transformation group.

A Euclidean plane isometry that fixes three noncollinear points is the identity.

Proof. Let a be an isometry, and A, B, and C be three noncollinear points fixed by
@, and D be any other point. We must show that (D) = D. Wherever a (D) is, it must
satisfy three distance equations: d(A, D) = d(A, a(D)), d(B, D) =d(B, a(D)), and
d(C, D) = d(C, a(D)). Thus a(D) must be on three circles: one centered at A with
radius AD, the second centered at B with radius B D, and the third centered at C with
radius CD (Fig. 4.8). Because A and B are distinct, the first two circles intersect in
at most two points, one of which is D. If D is the ﬂly intersection, we are done. But
suppose that there is anothei_goint, say, E. Then AB is the perpendicular bisector of
DE. However, C is not on AB. Thus C cannot be the same distance from D and E.
Hence (D) cannot be E, forcinga(D)=D. =
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Figure 4.8

Theorem 4.2.3 A Euclidean plane isometry is determined by what it does to any three noncollinear

Theorem 4.2.4

Theorem 4.2.5

points.

Proof. Let A, B, and C be any three noncollinear points, « be any isometry, and
B be any isometry such that a(A) = f(A), a(B) = B(B) and a(C) = B(C). By The-
orem 4.2.1, B! o & is an isometry and ™' oa(A) = A, B ca(B)=B and B! o
a(C) = C. By Theorem 4.2.2, 87! o « is the identity: B~! o @ = 1. When we compose
both sides on the left with 8, we geta = . =

For any two distinct points P and Q in the Euclidean plane, there is exactly one mirror
reflection that takes P to Q.

Proof.  With two distinct points we can use Euclid I-10 and I-11 to construct a per-
pendicular bisector. This perpendicular is unique by Hilbert’s axiom III-4. Then the

definition of a mirror reflection gives a unique mirror reflection, taking one point to
the other. =

EYery Euclidean plane isometry can be written as the composition of at most three
mirror reflections.

Proof.  Let a be any Euclidean plane isometry and A, B, and C be any three non-
collinear points in the plane. By Theorem 4.2.3 we only have to find a composition of
mirror reflections that together take A, B, and C to the same images as o does, say,
P, Q, and R (Fig. 4.9). If A # P, then by Theorem 4.2.4, there is a mirror reflection
py such that py(A) = P. Let uy(B) = B' and u(C) = C'. If B’ # Q, we repeat this
process, finding w7, which maps B’ to Q. However, we need to prove that u, leaves P
ﬁx@ote thatd(P, Q) =d(A, B)=d(P, B). Thus P is on the perpendicular bisector
of QB’, which means that u,(P) = P. Hence [b°l; moves A to P, B to Q, and C
to some point C”. Finally, we need to move C” io R. Again, we assume that C" # R,
use a mirror reflection 3, and verify that u3 leaves P and Q fixed. Thus, in the general
case, H3°H2°l; maps Ato P, Bto Q,andCto R.If A= P, B = Q, or C" =R,
then we omit 11, pa, or pu3, respectively. The only case not covered by the argument
presented is the identity transformation, . However, ¢ = p o u, for any mirror reflection
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Figure 4.9

u. Hence every Euclidean plane isometry can be written as the composition of three or
fewer mirror reflections. m

We can use Theorem 4.2.5 to classify the four possible types of Euclidean plane
isometries, which are summarized in Theorem 4.2.7. We have already discussed three
kinds of isometries: mirror reflections, rotations, and translations. Later we discuss the
other kind of isometry, glide reflections. First, let’s relate the three kinds of isometries
we know to the composition of one, two, or three mirror reflections in Theorem 4.2.5.
The “composition” of just one mirror reflection must be that mirror reflection.

For the composition of two mirror reflections there are three cases for the lines of
reflection: The two lines are the same, they are distinct but parallel, and they intersect in
a unique point. The first case gives the identity u o i = 1. The second case gives a trans-
lation twice as long as the distance between the lines and in a direction perpendicular to
them. Figure 4.10 illustrates several subcases. Problem 5 involves the use of congruent
triangles to show the arrows in Fig. 4.10 are all parallel and the same length. The third
case gives a rotation around the intersection of the two lines, where the angle is twice
the angle between the lines. Figure 4.11 illustrates two subcases. Problem 6 involves
the use of congruent triangles to show that the rotations in Fig. 4.11 are all the same
angle and around the same point. A mirror reflection switches orientation. Because the
identity, translations, and rotations are composed from two mirror reflections, they do
not switch orientation and we say that they are direct isometries.

The remaining option, the composition of three mirror reflections, switches orien-
tation three times and so is an indirect isometry, like a mirror reflection. Theorem 4.2.6
shows that three mirror reflections result either in a mirror reflection or a glide reflection,
defined as follows. ;

A Euclidean plane isometry y is a glide reflection iff there is a line k such that y is the
composition of the mirror reflection over k and a translation parallel to k.
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Example 5 Figure 4.12 indicates that a glide reflection can be written as the composition of a mirror
reflection and a translation. @

Exercise 4 Explain how a mirror reflection is a special case of a glide reflection. Explain why no
other glide reflections have fixed points. Explain why only the line k is stable in other
glide reflections.

Theorem 4.2.6 The composition of three mirror reflections is either a mirror reflection or a glide

reflection.

Proof. By Theorem 4.2.3, the images of three noncollinear points determine an isom-
etry. Let 8 be the composition of three mirror reflections and take A to A’, B to B, and
C to C’. Construct the midpoints M and M of the two line segments AA’ and BB'.

Case I  Assume that M| # M,. Let ju be the mirror reflection over the line k = M| M>
(Fig. 4.13). Let X be the intersection of k with the line through A and w4 (A). Then
AAM,; X is similar to AAA i (A) by Theorem 1.5.4. Theorem 1.5.1 then implies that

wr(A)A’ is parallel to k. Similarly, ABM,Y ~ ABB'u(B) and p(B)B' is parallel to
k, where Y is the intersection of k with B (B). Thus w;(A)A’ is parallel to u;(B)B'.
Note that AA’B'C’ = Apg(A) g (B) i (C) because both are congruent with AABC.

Let 7 be the translation taking u;(A) to A'.

Claim. 7 takes ui(B) to B’ and u(C) to C’, so B = T, a glide reflection.

Figure 4.12
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Figure 4.13

For the moment, let 7 take 14 (B) to B” and ux(C) to C”. Then ux(B), B’, and B” are
on the same line parallel to /(4)4”. Only two points on 1 (B) B’ have a distance from
A’ of d(A', B"): B" or the point Q, for which M| is the midpoint of B Q. However, we
assumed for case 1 that M; # Mj, so B' # Q. Because d(A’, B') =d(A’, B"), B' = B".
By Problem 4 there are only two places for C” to be, one of which is C’. However,
the triangle AA’B’C” has the same orientation as AA’B'C’, so C” = C'. Thus B is
the composition of j; with the translation 7. If u;(A) = A’, then the translation is the
identity and B = p;. Otherwise B is a glide reflection.

Case 2 Assume that M} = M. If the midpoint of CC’ is this same point, then the
isometry is a rotation of 180° around the point, but that is a direct isometry and so is not
B. Hence we can assume that the midpoint of A and A’ differs from the midpoint of C
and C’. Now we can apply the reasoning of case 1 here. m

There are four types of Euclidean plane isometries: mirror reflections, translations,
rotations, and glide reflections.

Proof.  From Theorem 4.2.5, every isometry can be written as the composition of one,
two, or three mirror reflections. Verify that Problems 5 and 6, Theorem 4.2.6, and the
preceding discussion cover all the possibilities for isometries. m

4.2.1 Klein’s definition of geometry

Felix Klein in his famous Erlanger Programm, given in 1872, used groups of transfor-
mations to give a definition of geometry: Geometry is the study of those properties of a
set that are preserved under a group of transformations on that set. Klein realized that we
can, for example, investigate the properties of Euclidean geometry by studying isome-

tries. Thus he would say that the area of a triangle is a Euclidean property because area

is preserved by isometries. That is, for any AA and any isometry o, AA and o(AA)
have the same area. Under Klein’s definition, congruence and measures of lengths and
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FELIX KLEIN

At the age of 23 Felix Klein (1849-1925) gave his inaugural address as a professor at the
University of Erlangen, the talk for which he is best remembered today. This presentation,
the Erlanger Programm, raised transformation groups in geometry from an important
concept to a unifying theme. Using transformation groups, Klein showed that the various
non-Euclidean geometries, projective geometry, and Euclidean geometry were closely
related, not competing subjects.

When Klein was 17 he became the assistant to Julius Pliicker, a physicist and geometer.
Inspired by Pliicker’s approach, Klein always emphasized the physical and intuitive a pects
of mathematics over rigor and abstraction. After Pliicker’s death in 1868, Klein weut to
Berlin to finish his graduate work. There he met Sophus Lie, who became a 'close friend for many years.
They went to Paris in 1870 for further studies. Both men were deeply influenced there
by the possibility that group theory could unify mathematics. Indeed, Klein’s Erlanger
Programm in 1872 is a direct outgrowth of this inspiration.

Klein developed numerous theoretical models in geometry, including the Klein bottle,
a curious two-dimensional surface with no inside and requiring four dimensions to realize
it. The following figure illustrates that a three-dimensional representation of a Klein bottle
intersects itself, unlike the theoretical shape.

/s

A three-dimensional representation of a Klein bottle.

He distinguished single elliptic geometry from spherical geometry and investigated
its models and transformations. To connect projective, Euclidean, and non-Euclidean
geometries by using transformations, Klein developed the model of hyperbolic geometry
named for him. He started to develop what we now call the Poincaré model, but he failed
to see its connection to inversions that Henri Poincaré (1854-1912) found.

Klein was impressed with Poincaré’s work and corresponded with him. However, their
common interest soon became a fierce rivalry. Both produced important mathematics,
but Klein suffered a nervous breakdown from the intense strain and felt that he had lost
the contest. After recovering, Klein produced some mathematics and wrote several books.
However, he focused on new tasks that called on his superior administrative abilities,
building up mathematics research and education at his university, throughout Germany,
and even in the United States.
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angles are Euclidean properties, as is the shape of a figure. However, the orientation of
figures isn’t a Euclidean property because mirror reflections and glide reflections switch
orientation. Also, verticality isn’t a Euclidean property because some isometries, such
as a rotation of 45°, tilt vertical lines. If we wanted to study orientation or verticality,
we would need to use different groups of transformations, and, according to Klein, we
would be studying a different geometry.

PROBLEMS FOR SECTION 4.2

1.

Suppose that an isometry f takes (1, 0) to (—1, 0),

(2,0) to (=1, —1) and (0, 2) to (1, 1), respectively.

Find the images of (0, 0) and (2, 2) and of a general
point (x, y). Draw a figure showing these points and
their images.

. Outline the original placement of a small rectangular

piece of paper on a larger piece of paper. Label the
corners of both the small rectangle and the outline
A, B, C, and D so that you can determine the
rectangle’s movements. Note that the centers of
rotation are on the outline and do not move.

a) Rotate the small rectangle 180° around A and
then 180° around C on the outline. Describe the
resulting transformation.

b) Return the small piece of paper to its starting
position and repeat part (a) but switch the
order of the rotations. Describe how this new
transformation differs from the one in part (a).

¢) Repeat parts (a) and (b) but use rotations of 90°
at A and C.

d) Repeat part (c) but rotate the rectangle 90° around
A followed by a rotation of —90° around C.

e) Repeat part (c) with various angles and centers of
rotations. Make a conjecture about the resulting
transformations.

. a) If wy is a mirror reflection over the line k& and

is a translation in the direction of k, investigate
whether p4 o T = t o u and justify your answer.
[Hint: It may help to do this first physically with
a triangle placed on a sheet of paper. Draw the
line k on the paper. Geometer’s Sketchpad or
CABRI also will help.]

b) Find three mirror reflections whose composition
is a glide reflection.

¢) What is the composition of a glide reflection with
itself? Justify your answer.

4.

a) If o is an isometry which fixes two points, prove
that « is the identity or the mirror reflection over
the line through the fixed points.

b) If @ and B are isometries such that ¢(A) = B(A)
anda(B) = B(B), prove thato = S ora = oK,
where p is the mirror reflection over the line AB.

. Let k and m be parallel with a perpendicular

distance of d between them and p; and pw, be
the mirror reflections over these lines. Prove that
Ik © Wy is a translation of length 24 in the direction
perpendicular to k and m. [Hint: In Fig. 4.10 select
the midpoint of A and p,,(A), as well as another
point on m. These points form congruent triangles
with A and w,,(A). Repeat with the line k. Analyze
other cases similarly.] Also prove that p,, o uy and
Wi © [y, are inverses.

. Let k and m intersect at point P and form an angle of

r° and w4 and w,, be the mirror reflections over these
lines. Prove that uy o u, is a rotation of 2r° around
P. [Hint: In Fig. 4.11 let Q be the midpoint of A
and pp, (A). Use triangles APAQ and AP, (A)Q.
Continue as in Problem 5. Decide what other cases,
besides those in Fig. 4.11, can occur.] Also prove
that (1, o g and g o p,, are inverses.

Let O be between P and R on a Euclidean line.
Explain why, for any isometry a, a(Q) is between
o (P) and a(R) and all three are on a line.

. Let p; and p; be any two rotations. Prove that their

composition p; o p; is a translation, a rotation, or
the identity. Find the conditions that are necessary
and sufficient for the composition p; o p; to be a
translation.

Let 7) and 77 be two translations and P and Q be two
points. How are 15 o 7 and 1) o 1, related? Draw a
figure showing P, Q, t1(P), 11(Q), 2(7;(P)), and

72(11(Q)). Prove that the composition 7) o 77 is a
translation. [Hint: Use SAS.]
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10. Prove that D, the set of all direct isometries of the

11.

12.

Euclidean plane, is a transformation group. Note that

D preserves orientation in addition to all Euclidean

properties.

Let V be the set of all Euclidean plane isometries

that take vertical lines to vertical lines. Describe V

and prove that it is a transformation group.

Define twosets A ={A;:ie€l}and B={B;:i €I}

to be congruent, written A = B, iff forall i, j € I,

d(A;, Aj) =d(B;, Bj).

a) Why are two triangles congruent under this defi-
nition also congruent under the usual definition?
[Hint: Consider the vertices of the triangles.]

13.

b) Why are any two lines congruent under this
definition? '

¢) Why are circles with equal radii congruent under
this definition?

Define two sets A and B to be isometric iff there is

an isometry « such that «(A) = B. The definition

of congruent sets in Problem 12 guarantees that

isometric sets are congruent. Show the converse

in Euclidean geometry: Foi any two congruent

Euclidean plane sets A = (A; :i € I} and B = (B, :

i € I}, there is an isometry taking A to B. [Hint: Use

Theorem 4.2.3, its proof, and Theorem 4.2.5.]



