METABOLISM

I. Introduction.
 - metabolism: all chemical reactions necessary to maintain life; these processes are either anabolic or catabolic.

 A. Anabolism: reactions that build large molecules from smaller ones (i.e., aa form proteins)

 B. Catabolism: reactions in which complex molecules are broken down into simpler ones (i.e., events of cellular respiration).

II. Carbohydrate metabolism.

 A. General comments.
 - all food carbohydrates eventually are converted to glucose; glucose breakdown is oxidation of glucose

 - recall that oxidation is a loss of electrons, reduction is a gain of electrons.

 - oxidation of glucose involves a stepwise removal of pairs of hydrogen atoms from substrate molecules, passing them on to electron acceptors.

 - two major electron acceptors are NAD+ and FAD.

 - the bulk of energy (ATP) from glucose oxidation results from use of NADH+H+/FADH₂ to set up a hydrogen ion gradient used to drive ATP synthesis.

 - glucose oxidation: \(\text{C}_2\text{H}_12\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{H}_2\text{O} + 6\text{CO}_2 + 38\text{ATP} + \text{heat} \)

 - this process involves glycolysis, Krebs Cycle, and electron transport chain (ETC).

 -there are two means of ATP production throughout glucose oxidation: substrate level phosphorylation where high energy phosphate groups are transferred directly from phosphorylated molecules to ADP; oxidative phosphorylation which is carried out by ETC proteins; uses NADH+H+/FADH2 to set up a hydrogen ion gradient, the dissipation of which leads to ATP synthesis.

 B. Glycolysis.
 - series of 10 chemical steps where one glucose molecule is converted into two pyruvate molecules; net yield is 2 ATP/glucose molecule.
- this process is anaerobic (doesn't need oxygen).

1. Sugar activation: glucose committed to glycolysis; 2 ATP molecules are used.

2. Sugar cleavage: a six-carbon sugar converted to two three-carbon sugars.

3. Sugar oxidation and formation of ATP: begin stepwise removal of pairs of hydrogen atoms passing them onto electron acceptors; net yield is 2 pyruvate, 2 NADH+H+, and 2 ATP.
 - in aerobic conditions, pyruvate is moved in the direction of the Krebs cycle; in anaerobic conditions pyruvate is converted into lactic acid.

C. Krebs cycle.
 - occurs in the mitochondrial matrix; fueled by the pyruvate from glycolysis.

1. Pyruvate converted to acetyl CoA: step that links glycolysis to the Krebs cycle; it involves three reactions all catalyzed by one enzyme, pyruvate dehydrogenase:

 a. decarboxylation: pyruvate has one carbon removed, released as CO2.

 b. oxidation: removal a pair of hydrogen atoms.
 - as a result of the decarboxylation and the oxidation, acetic acid is produced.

 c. acetic acid reacts with coenzyme A to form acetyl CoA.
2. Acetyl CoA enters the Krebs: series of events take place as cycle moves through 8 consecutive steps.

- 2 decarboxylations; account for the 2 Cs that came into Krebs; produce carbon dioxide.

- 4 oxidations: four transfers of hydrogen atom pairs from Krebs intermediates to electron acceptors

- 1 substrate level phosphorylation: 1 ATP produced.

- Summary:

<table>
<thead>
<tr>
<th>per pyruvate</th>
<th>per glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 CO2</td>
<td>6 CO2</td>
</tr>
<tr>
<td>4 NADH + H⁺</td>
<td>8 NADA + H⁺</td>
</tr>
<tr>
<td>1 FADH2</td>
<td>2 FADH2</td>
</tr>
<tr>
<td>1 ATP</td>
<td>2 ATP</td>
</tr>
</tbody>
</table>

D. Electron transport chain (ETC) and oxidative phosphorylation:
- at this point we have electron acceptors loaded down with electrons; they are "worth" a lot of energy

- a group of proteins in the inner mitochondrial membrane are arranged in a sequence of decreasing energy states.

- the electron acceptors (from glycolysis and Krebs) deliver electrons and protons at the "top" level of the chain to one of the protein electron acceptors; the protons (H⁺) escape into the matrix and electrons are passed down the chain into successively lower energy levels, with a release of energy in every step.

- the final electron acceptor (at lowest point in chain) is oxygen; it accepts electrons and combines with hydrogen to form water.

- electrons are delivered at a high energy level in the chain to molecules with lower affinity (desire) for electrons than oxygen (which has the highest affinity for electrons); thus as electrons are passed on each successive carrier has greater affinity for electrons than the one preceding it; oxygen therefore helps to "pull" the electrons down the chain; if there is no oxygen present, then there would be no final acceptor for electrons and no gradient of energy levels would be maintained.
- the stepwise release of energy is used to pump the protons from the matrix, across the membrane into the intermembranous space.

- therefore a proton gradient is established across the inner mitochondrial membrane, an electrochemical gradient.

- this dissipation of the electrochemical gradient (as protons move from area of high concentration to area of low concentration) releases energy used in the production of ATP.

- the protein channel, ATP synthase, allows the protons to move down the electrochemical gradient and drive the process by which ATP is synthesized from ADP and P.

- for every NADH+H+ there are 3 ATP formed; for every FADH₂, there are 2 ATP formed; why?

E. Glycogenesis / Glycolysis.

1. Glycogenesis:
 - if more glucose is available than can be immediately oxidized, then glycogen is produced.

 - under hormonal control.

2. Glycolysis:
 - when blood glucose levels drop below the amount needed to maintain the body's needs, glycogen is broken down and glucose is produced.

 - tight hormonal control.