Reactivity in Chemistry

Reaction Kinetics

MK16. Solutions to Selected Problems

 

Problem MK1.1.

A plot of ln(k) vs. 1/T gives a stright line fitting the equation: y = mx + b.

m = -Ea/R or Ea = -mR = -m * 8.314 J K-1 mol2-1

b = lnA or A = eb

 

Problem MK1.2.

A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -4606.6x + 10.2.

ΔH = mR = 4606.6 K * 8.314 J K-1 mol2-1 = 38.3 kJ mol-1

ΔS = 8.314 * [b - ln(kB/h)] = 8.314(10.2 - 23.759) = -112.7 J K-1 mol-1

 

Problem MK1.3.

A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -5228.6x + 12.739.

ΔH = mR = 5228.6 K * 8.314 J K-1 mol2-1 = 43.5 kJ mol-1

ΔS = 8.314 * [b - ln(kB/h)] = 8.314(12.739 - 23.759) = -91.6 J K-1 mol-1

 

Problem MK1.4.

A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -11308x + 20.9.

ΔH = mR = 11308 K * 8.314 J K-1 mol2-1 = 94.0 kJ mol-1

ΔS = 8.314 * [b - ln(kB/h)] = 8.314(20.927 - 23.759) = -23.5 J K-1 mol-1

 

Problem MK1.5.

A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -6262.5x + 5.2411.

ΔH = mR = 6262.5 K * 8.314 J K-1 mol2-1 = 52.1 kJ mol-1

ΔS = 8.314 * [b - ln(kB/h)] = 8.314(5.2411 - 23.759) = -154.0 J K-1 mol-1

 

Problem MK3.1.

a)  slope =  (0.107-.125)/140 =  -1.29 x 10-4 mol L-1 sec-1

b)  slope =  (0.00440-.00499)/51 = -1.16 x 10-5 mol L-1 min-1

c)  slope =  (0.0063-.007)/10 = -7.0 x 10-5 mol L-1 min-1

 

Problem MK3.2.

a)   t1/2 = 0.693/k

  t1/2 = 0.693 / 2 x 10-2 min-1  = 35 minutes

number of half lives = 175 minutes / 35 minutes = 5 half lives

 

b)   t1/2 = 0.693/k

  t1/2 = 0.693 / 1.5 x 10-2 min-1  = 46 minutes

number of half lives = 90 minutes / 46 minutes = 1.96 half lives

 

c)   t1/2 = 0.693/k

  t1/2 = 0.693 / 0.127 hr-1  = 5.46 hours

number of half lives = 18 hours / 5.46 hours = 3.3 half lives

 

Problem MK3.3.

a) k = rate / concentration = slope = (.005 - 0.0015)/(0.08 - 0.02) = 5.8 x 10-2 s-1

 

b) k = rate / concentration = slope = (.0028 - 0.001)/(0.6 - 0.2) = 4.5 x 10-3 s-1

 

c) k = rate / concentration = slope = (.012 - 0.003)/(0.04 - 0.01) = 0.3 s-1

 

Problem MK3.4.

a)  rate1/rate2 = k[Reactant]1m / k[Reactant]2m = ([Reactant]1 / [Reactant]2)m

0.189 / 0.0944 = (0.0194 / 0.0097)m

log(2.00) = m log(2.00)

m = .301 / 0.301 = 1

first order

 

b)  rate1/rate2 = k[Reactant]1m / k[Reactant]2m = ([Reactant]1 / [Reactant]2)m

0.806 / 0.101 = (050 / 0.25)m

log(7.98) = m log(2.00)

m = 0.902 / 0.301 = 3

third order

 

c)  rate1/rate2 = k[Reactant]1m / k[Reactant]2m = ([Reactant]1 / [Reactant]2)m

0.000508 / 0.000127 = (3.00 / 1.50)m

log(4.00) = m log(2.00)

m = 0.602 / 0.302 = 2

second order

 

Problem MK3.5.

a) subject/standard = 0.79; 1.24; 1.42  increasing

b) subject/standard = 1.50; 1.50; 1.50 constant

c) subject/standard = 1.17; 1.08; 0.913 decreasing

 

Problem MK4.1.

a)

d[Co']/dt = 0 = k1[Co] - k-1[dmb][Co'] - k2[nor][Co']

k1[Co] = k-1[dmb][Co'] + k2[nor][Co']

[Co'] = k1[Co] / ( k-1[dmb] + k2[nor])

d[Product]/dt = k2[nor][Co']

= k1k2[nor][Co] / ( k-1[dmb] + k2[nor]) = kobs[Co]

b)

1/kobs = ( k-1[dmb] + k2[nor]) / (k1k2[nor])

1/kobs = (k-1 / k1k2)([dmb) / [nor]) + 1 / k1

A plot of 1/kobs vs. [dmb]/[nor] is linear with slope = (k-1 / k1k2) and y intercept = 1 / k1.

 

Problem MK5.1.

a) non-competitive

b)  competitive

c)  competitive

d) non-competitive

 

Problem MK6.1.

a)  Vmax = 1.8 x 10-5 mol L-1 s-1

     Vmax / 2 = 9 x 10-6 mol L-1 s-1  so Km = 6 mol L-1   

b) Vmax = 6.5 x 10-7 mol L-1 s-1

     Vmax / 2 = 3.25 x 10-7 mol L-1 s-1  so Km = 7 mol L-1   

c)  Vmax = 2.6 x 10-5 mol L-1 s-1

     Vmax / 2 = 1.3 x 10-5 mol L-1 s-1  so Km = 6 mol L-1   

d)  Vmax = 1.2 x 10-5 mol L-1 s-1

     Vmax / 2 = 6 x 10-6 mol L-1 s-1  so Km = 6 mol L-1   

e)  Vmax = 6.0 x 10-7 mol L-1 s-1

     Vmax / 2 = 3 x 10-7 mol L-1 s-1  so Km = 13 mol L-1   

   

Problem MK6.2.

a) Kdissoc = k-1/k1 = 0.00765/0.0101 = 0.757

b) Kdissoc = k-1/k1 = 0.321/0.197 = 1.63

c) Kdissoc = k-1/k1 = 0.542/0.775 = 0.699

d) Kdissoc = k-1/k1 = 0.499/0.0228 = 0.0457

 

Problem MK6.3.

a) Km = k-1/(k1 + k2) = 0.00765/(0.0101 + 0.00654) = 0.460

a) Km = k-1/(k1 + k2) = 0.321/(0.197 + 0.0000654) = 1.63

a) Km = k-1/(k1 + k2) = 0.542/(0.775 + 0.234) = 0.537

a) Km = k-1/(k1 + k2) = 0.0228/(0.499 + 0.0087) = 0.0449

 

Problem MK6.4.

In all cases, Kdissoc = k-1/k1 = 0.195/0.326 = 0.598

a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.00038) = 0.597

a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.723) = 0.186

a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.00239) = 0.594

a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.0345) = 0.0541

Km is quite similar to Kdissoc provided k2 is much smaller than k-1.

 

Problem MK6.5.

a) kcat = vmax/[E] = (125.3 µM min-1*106pM/µM)/31.5 pM = 1,250 min-1

b) kcat = vmax/[E] = (1.587 mM min-1*109pM/mM)/7.04 pM = 15,900 min-1

c) kcat = vmax/[E] = (3.21 nM min-1*103pM/nM)/0.0129 pM = 465 min-1

d) kcat = vmax/[E] = (0.129 µM min-1*106pM/µM)/2.27 pM = 3.93 min-1

 

Problem MK6.6.

a) Efficiency = kcat/Km = 409 min-1 / 31.5 nM = 39.6 L nmol-1 min-1

b) Efficiency = kcat/Km = 22.6 min-1 / 1.56 mM = 1.26 L mmol-1 min-1

c) Efficiency = kcat/Km = 1.76 min-1 / 17.4 mM = 1,760 L mmol-1 min-1

 

 

Problem MK6.7.

a) Vmax = 1/b = 1/0.129 L s nmol-1= 7.75 nmol L-1 s-1

Km = -1/x int = m/b = 0.00326 s-1/0.129 L s nmol-1= 0.0253 nmol L-1

b) Vmax = 1/b = 1/0.0957 L s nmol-1= 10.5 nmol L-1 s-1

Km = -1/x int = m/b = 0.0759 s-1/0.0957 L s nmol-1= 0.793 nmol L-1

c) Vmax = 1/b = 1/0.129 L s nmol-1= 1.31 nmol L-1 s-1

Km = -1/x int = m/b = 0.000434 s-1/0.765 L s nmol-1= 0.000567 nmol L-1

 

Problem MK7.1.

a)  1/Vmax = 30 L s mol-1 so Vmax = 3.3 x 10-2 mol L-1 s-1     

     -1/Km = -40 L mmol-1 so Km =  2.5 x 10-2 M L-1            

b)  1/Vmax = 50 L s mol-1 so Vmax = 2.0 x 10-2 mol L-1 s-1     

     -1/Km = -70 L mmol-1 so Km =  1.4 x 10-2 M L-1           

c)  1/Vmax = 60 L s mol-1 so Vmax = 1.7 x 10-2 mol L-1 s-1     

     -1/Km = -70 L mmol-1 so Km =  1.4 x 10-2 M L-1           

d)  1/Vmax = 50 L s mol-1 so Vmax = 2.0 x 10-2 mol L-1 s-1     

     -1/Km = -100 L mmol-1 so Km =  1.0 x 10-2 M L-1           

e)  1/Vmax = 30 L s mol-1 so Vmax = 3.3 x 10-2 mol L-1 s-1     

     -1/Km = -100 L mmol-1 so Km =  1.0 x 10-2 M L-1           

a)  1/Vmax = 30 L s mol-1 so Vmax = 3.3 x 10-2 mol L-1 s-1     

     -1/Km = -60 L mmol-1 so Km =  1.7 x 10-2 M L-1           

 

 

Problem MK7.2.

a)  uncompetitive

b)  mixed

c)  noncompetitive

d) competitive

e)  uncompetitive

f)  noncompetitive

g) competitive

 

 

 

 

This site was written by Chris P. Schaller, Ph.D., College of Saint Benedict / Saint John's University (retired) with other authors as noted on individual pages.  It is freely available for educational use.

Creative Commons License
Structure & Reactivity in Organic, Biological and Inorganic Chemistry by Chris Schaller is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Send corrections to cschaller@csbsju.edu

This material is based upon work supported by the National Science Foundation under Grant No. 1043566.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Navigation:

Back to Mechanistic Determination

Back to Web Materials on Structure & Reactivity in Chemistry