Reactivity in Chemistry
Reaction Kinetics
MK16. Solutions to Selected Problems
Problem MK1.1.
A plot of ln(k) vs. 1/T gives a stright line fitting the equation: y = mx + b.
m = -Ea/R or Ea = -mR = -m * 8.314 J K-1 mol2-1
b = lnA or A = eb
Problem MK1.2.
A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -4606.6x + 10.2.
ΔH‡ = mR = 4606.6 K * 8.314 J K-1 mol2-1 = 38.3 kJ mol-1
ΔS‡ = 8.314 * [b - ln(kB/h)] = 8.314(10.2 - 23.759) = -112.7 J K-1 mol-1
Problem MK1.3.
A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -5228.6x + 12.739.
ΔH‡ = mR = 5228.6 K * 8.314 J K-1 mol2-1 = 43.5 kJ mol-1
ΔS‡ = 8.314 * [b - ln(kB/h)] = 8.314(12.739 - 23.759) = -91.6 J K-1 mol-1
Problem MK1.4.
A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -11308x + 20.9.
ΔH‡ = mR = 11308 K * 8.314 J K-1 mol2-1 = 94.0 kJ mol-1
ΔS‡ = 8.314 * [b - ln(kB/h)] = 8.314(20.927 - 23.759) = -23.5 J K-1 mol-1
Problem MK1.5.
A plot of ln(k/T) vs. 1/T gives a stright line with the equation: y = -6262.5x + 5.2411.
ΔH‡ = mR = 6262.5 K * 8.314 J K-1 mol2-1 = 52.1 kJ mol-1
ΔS‡ = 8.314 * [b - ln(kB/h)] = 8.314(5.2411 - 23.759) = -154.0 J K-1 mol-1
Problem MK3.1.
a) slope = (0.107-.125)/140 = -1.29 x 10-4 mol L-1 sec-1
b) slope = (0.00440-.00499)/51 = -1.16 x 10-5 mol L-1 min-1
c) slope = (0.0063-.007)/10 = -7.0 x 10-5 mol L-1 min-1
Problem MK3.2.
a) t1/2 = 0.693/k
t1/2 = 0.693 / 2 x 10-2 min-1 = 35 minutes
number of half lives = 175 minutes / 35 minutes = 5 half lives
b) t1/2 = 0.693/k
t1/2 = 0.693 / 1.5 x 10-2 min-1 = 46 minutes
number of half lives = 90 minutes / 46 minutes = 1.96 half lives
c) t1/2 = 0.693/k
t1/2 = 0.693 / 0.127 hr-1 = 5.46 hours
number of half lives = 18 hours / 5.46 hours = 3.3 half lives
Problem MK3.3.
a) k = rate / concentration = slope = (.005 - 0.0015)/(0.08 - 0.02) = 5.8 x 10-2 s-1
b) k = rate / concentration = slope = (.0028 - 0.001)/(0.6 - 0.2) = 4.5 x 10-3 s-1
c) k = rate / concentration = slope = (.012 - 0.003)/(0.04 - 0.01) = 0.3 s-1
Problem MK3.4.
a) rate1/rate2 = k[Reactant]1m / k[Reactant]2m = ([Reactant]1 / [Reactant]2)m
0.189 / 0.0944 = (0.0194 / 0.0097)m
log(2.00) = m log(2.00)
m = .301 / 0.301 = 1
first order
b) rate1/rate2 = k[Reactant]1m / k[Reactant]2m = ([Reactant]1 / [Reactant]2)m
0.806 / 0.101 = (050 / 0.25)m
log(7.98) = m log(2.00)
m = 0.902 / 0.301 = 3
third order
c) rate1/rate2 = k[Reactant]1m / k[Reactant]2m = ([Reactant]1 / [Reactant]2)m
0.000508 / 0.000127 = (3.00 / 1.50)m
log(4.00) = m log(2.00)
m = 0.602 / 0.302 = 2
second order
Problem MK3.5.
a) subject/standard = 0.79; 1.24; 1.42 increasing
b) subject/standard = 1.50; 1.50; 1.50 constant
c) subject/standard = 1.17; 1.08; 0.913 decreasing
Problem MK4.1.
a)
d[Co']/dt = 0 = k1[Co] - k-1[dmb][Co'] - k2[nor][Co']
k1[Co] = k-1[dmb][Co'] + k2[nor][Co']
[Co'] = k1[Co] / ( k-1[dmb] + k2[nor])
d[Product]/dt = k2[nor][Co']
= k1k2[nor][Co] / ( k-1[dmb] + k2[nor]) = kobs[Co]
b)
1/kobs = ( k-1[dmb] + k2[nor]) / (k1k2[nor])
1/kobs = (k-1 / k1k2)([dmb) / [nor]) + 1 / k1
A plot of 1/kobs vs. [dmb]/[nor] is linear with slope = (k-1 / k1k2) and y intercept = 1 / k1.
Problem MK5.1.
a) non-competitive
b) competitive
c) competitive
d) non-competitive
Problem MK6.1.
a) Vmax = 1.8 x 10-5 mol L-1 s-1
Vmax / 2 = 9 x 10-6 mol L-1 s-1 so Km = 6 mol L-1
b) Vmax = 6.5 x 10-7 mol L-1 s-1
Vmax / 2 = 3.25 x 10-7 mol L-1 s-1 so Km = 7 mol L-1
c) Vmax = 2.6 x 10-5 mol L-1 s-1
Vmax / 2 = 1.3 x 10-5 mol L-1 s-1 so Km = 6 mol L-1
d) Vmax = 1.2 x 10-5 mol L-1 s-1
Vmax / 2 = 6 x 10-6 mol L-1 s-1 so Km = 6 mol L-1
e) Vmax = 6.0 x 10-7 mol L-1 s-1
Vmax / 2 = 3 x 10-7 mol L-1 s-1 so Km = 13 mol L-1
Problem MK6.2.
a) Kdissoc = k-1/k1 = 0.00765/0.0101 = 0.757
b) Kdissoc = k-1/k1 = 0.321/0.197 = 1.63
c) Kdissoc = k-1/k1 = 0.542/0.775 = 0.699
d) Kdissoc = k-1/k1 = 0.499/0.0228 = 0.0457
Problem MK6.3.
a) Km = k-1/(k1 + k2) = 0.00765/(0.0101 + 0.00654) = 0.460
a) Km = k-1/(k1 + k2) = 0.321/(0.197 + 0.0000654) = 1.63
a) Km = k-1/(k1 + k2) = 0.542/(0.775 + 0.234) = 0.537
a) Km = k-1/(k1 + k2) = 0.0228/(0.499 + 0.0087) = 0.0449
Problem MK6.4.
In all cases, Kdissoc = k-1/k1 = 0.195/0.326 = 0.598
a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.00038) = 0.597
a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.723) = 0.186
a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.00239) = 0.594
a) Km = k-1/(k1 + k2) = 0.195/(0.326 + 0.0345) = 0.0541
Km is quite similar to Kdissoc provided k2 is much smaller than k-1.
Problem MK6.5.
a) kcat = vmax/[E] = (125.3 µM min-1*106pM/µM)/31.5 pM = 1,250 min-1
b) kcat = vmax/[E] = (1.587 mM min-1*109pM/mM)/7.04 pM = 15,900 min-1
c) kcat = vmax/[E] = (3.21 nM min-1*103pM/nM)/0.0129 pM = 465 min-1
d) kcat = vmax/[E] = (0.129 µM min-1*106pM/µM)/2.27 pM = 3.93 min-1
Problem MK6.6.
a) Efficiency = kcat/Km = 409 min-1 / 31.5 nM = 39.6 L nmol-1 min-1
b) Efficiency = kcat/Km = 22.6 min-1 / 1.56 mM = 1.26 L mmol-1 min-1
c) Efficiency = kcat/Km = 1.76 min-1 / 17.4 mM = 1,760 L mmol-1 min-1
Problem MK6.7.
a) Vmax = 1/b = 1/0.129 L s nmol-1= 7.75 nmol L-1 s-1
Km = -1/x int = m/b = 0.00326 s-1/0.129 L s nmol-1= 0.0253 nmol L-1
b) Vmax = 1/b = 1/0.0957 L s nmol-1= 10.5 nmol L-1 s-1
Km = -1/x int = m/b = 0.0759 s-1/0.0957 L s nmol-1= 0.793 nmol L-1
c) Vmax = 1/b = 1/0.129 L s nmol-1= 1.31 nmol L-1 s-1
Km = -1/x int = m/b = 0.000434 s-1/0.765 L s nmol-1= 0.000567 nmol L-1
Problem MK7.1.
a) 1/Vmax = 30 L s mol-1 so Vmax = 3.3 x 10-2 mol L-1 s-1
-1/Km = -40 L mmol-1 so Km = 2.5 x 10-2 M L-1
b) 1/Vmax = 50 L s mol-1 so Vmax = 2.0 x 10-2 mol L-1 s-1
-1/Km = -70 L mmol-1 so Km = 1.4 x 10-2 M L-1
c) 1/Vmax = 60 L s mol-1 so Vmax = 1.7 x 10-2 mol L-1 s-1
-1/Km = -70 L mmol-1 so Km = 1.4 x 10-2 M L-1
d) 1/Vmax = 50 L s mol-1 so Vmax = 2.0 x 10-2 mol L-1 s-1
-1/Km = -100 L mmol-1 so Km = 1.0 x 10-2 M L-1
e) 1/Vmax = 30 L s mol-1 so Vmax = 3.3 x 10-2 mol L-1 s-1
-1/Km = -100 L mmol-1 so Km = 1.0 x 10-2 M L-1
a) 1/Vmax = 30 L s mol-1 so Vmax = 3.3 x 10-2 mol L-1 s-1
-1/Km = -60 L mmol-1 so Km = 1.7 x 10-2 M L-1
Problem MK7.2.
a) uncompetitive
b) mixed
c) noncompetitive
d) competitive
e) uncompetitive
f) noncompetitive
g) competitive
This site was written by Chris P. Schaller, Ph.D., College of Saint Benedict / Saint John's University (retired) with other authors as noted on individual pages. It is freely available for educational use.
Structure & Reactivity in Organic,
Biological and Inorganic Chemistry by
Chris Schaller
is licensed under a
Creative Commons Attribution-NonCommercial 3.0 Unported License.
Send corrections to cschaller@csbsju.edu
This material is based upon work supported by the National Science Foundation under Grant No. 1043566.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Navigation:
Back to Mechanistic Determination
Back to Web Materials on Structure & Reactivity in Chemistry