Biochemistry Online: An Approach Based on Chemical Logic

Biochemistry Online

CHAPTER 2 - PROTEIN STRUCTURE 

A:  AMINO ACIDS

BIOCHEMISTRY - DR. JAKUBOWSKI

Last Update:  02/27/16

Learning Goals/Objectives for Chapter 2A:  After class and this reading, students will be able to

  • state the charge on amino acid side chains using the Henderson Hasselbach equation and the approximate charge by inspection at any given pH
  • draw mechanisms and identify products for the reaction of nucleophilic side chains Lys and Cys with common chemical modification agents and extend this understanding to reactions of His.
  • draw mechanisms for disulfide exchange reactions for sulfhydryls using them and oxidation numbers to explain redox reactions of cysteine/cystine.

A4.  Introduction to Amino Acid Reactivity

You should be able to identify which side chains contain H bond donors and acceptors. Likewise, some are acids and bases. You should be familiar with the approximate pKa's of the side chains, and the N and C terminal groups. Three of the amino acid side chains (Trp, Tyr, and Phe) contribute significantly to the UV absorption of a protein at 280 nm.  This section will dealing predominantly with the chemical reactivity of the side chains, which is important in understanding the properties of the proteins.   Many of the side chains are nucleophiles.  Nucleophilicity is a measure of how rapidly molecules with lone pairs of electrons can react in nucleophilic substitution reactions. It correlates with basicity, which measures the extent to which a molecule with lone pairs can react with an acid (Bronsted or Lewis). The properties of the atom which holds the lone pair are important in determining both nucleophilicity and basicity. In both cases, the atom must be willing to share its unbonded electron pair. If the atoms holding the nonbonded pair is more electronegative, it will be less likely to share its electrons, and that molecule will be a poorer nucleophile (nu:) and weaker base. Using these ideas, it should be clear that RNH2 is a better nucelophile than ROH, OH- is a better  than H2O and RSH is a better than H2O. In the latter case, S is bigger and its electron cloud is more polarizable - hence it is more reactive.  The important side chain nucleophiles (in order from most to least nucleophilic) are Cys (RSH, pKa 8.5-9.5), His (pKa 6-7), Lys (pKa 10.5) and Ser (ROH, pKa 13). 

An understanding of the chemical reactivity of the various R group side chains of the amino acids in a protein is important since chemical reagents that react specifically with a given amino acid side chain  can be used to: 

Figure:  A REVIEW SUMMARY OF THE CHEMISTRY OF ALDEHYDES, KETONES, AND CARBOXYLIC ACID DERIVATIVES

 

The side chain of serine is generally no more reactive than ethanol. It is a potent nucleophile in a certain class of proteins (proteases, for example) when it is deprotonated. The amino group of lysine is a potent nucleophile only when deprotonated.

backNavigation

Return to Chapter 2A:  Amino Acid Sections

Return to Biochemistry Online Table of Contents

Archived version of full Chapter 2A:  Amino Acids

 

Creative Commons License
Biochemistry Online by Henry Jakubowski is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.