Biochemistry Online: An Approach Based on Chemical Logic

Biochemistry Online

CHAPTER 9 - SIGNAL TRANSDUCTION

B:  NEURAL SIGNALING

BIOCHEMISTRY - DR. JAKUBOWSKI

 06/10/14

Learning Goals/Objectives for Chapter 9B:
After class and this reading, students will be able to

  • describe how a transmembrane ion gradient and nongated/gated membrane ion channels specific for given ions can give rise to a transmembrane electric potential across membranes
  • given ion concentrations and the electrical potential across a membrane, predict likely changes in the membrane potential and ion concentrations on the opening of specific channnels;
  • use the Goldman equation to predict transmembrane electrical potentials;
  • state difference between the communication across the neuromuscular junction and a synapse between two neurons;
  • state the difference between nongated and gated ion channels;
  • describe different ways to open/close gated ion channels
  • describe the immediate changes in the muscle cells when acetylcholine is released into the neuromuscular junction
  • describe the roles of stimulatory neurotransmitter receptors, voltage-gated Na+and K+ channels and the Na/K-ATPase  in the activation of a neuron;
  • explain the mechanism for selectivity of K+ over the smaller Na+ ion in the K+ channel;
  • briefly explain how membrane protein channels can be gated open by changes in transmembrane potential;

B13.  Summary

1. the same ions moving through different channels can have different consequences. Consider the example of potassium ions. When it moves through a:

2. If two ions are involved in signaling, the result depends on

In summary, ligand and voltage gated channels allow changes in the polarization of the membrane. Other mechanisms can also lead to changes. Membrane proteins can be phosphorylated (using ATP) by protein kinases in the cell, leading to a change in the conformation of the membrane protein, and either an opening or closing of the channel. Channels linked to the cytoskeleton of the cells can also be opened or closed through stretching. Other stimuli that gate channels are light (through photoisomerization-induced conformational changes), heat, and cold. 

backNavigation

Return to Chapter 9B: Neural Signaling Sections

Return to Biochemistry Online Table of Contents

Archived version of full Chapter 9B:  Neural Signaling

 

Creative Commons License
Biochemistry Online by Henry Jakubowski is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.